These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 33425087)

  • 1. Biomechanical factors in three-dimensional tissue bioprinting.
    Ning L; Gil CJ; Hwang B; Theus AS; Perez L; Tomov ML; Bauser-Heaton H; Serpooshan V
    Appl Phys Rev; 2020 Dec; 7(4):041319. PubMed ID: 33425087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels.
    GhavamiNejad A; Ashammakhi N; Wu XY; Khademhosseini A
    Small; 2020 Sep; 16(35):e2002931. PubMed ID: 32734720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprinting: A focus on improving bioink printability and cell performance based on different process parameters.
    Wang J; Cui Z; Maniruzzaman M
    Int J Pharm; 2023 Jun; 640():123020. PubMed ID: 37149110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design.
    Puistola P; Miettinen S; Skottman H; Mörö A
    Mater Today Bio; 2024 Feb; 24():100924. PubMed ID: 38226015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review.
    Dzobo K; Motaung KSCM; Adesida A
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
    Tarassoli SP; Jessop ZM; Jovic T; Hawkins K; Whitaker IS
    Front Bioeng Biotechnol; 2021; 9():616753. PubMed ID: 34722473
    [No Abstract]   [Full Text] [Related]  

  • 16. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High-Quality Shapes in Embedded Bioprinting.
    Wu Y; Yang X; Gupta D; Alioglu MA; Qin M; Ozbolat V; Li Y; Ozbolat IT
    Adv Funct Mater; 2024 May; 34(21):. PubMed ID: 38952568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterials / bioinks and extrusion bioprinting.
    Chen XB; Fazel Anvari-Yazdi A; Duan X; Zimmerling A; Gharraei R; Sharma NK; Sweilem S; Ning L
    Bioact Mater; 2023 Oct; 28():511-536. PubMed ID: 37435177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.