These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

627 related articles for article (PubMed ID: 33425858)

  • 41. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments.
    Zhu JY; Agarwal UP; Ciesielski PN; Himmel ME; Gao R; Deng Y; Morits M; Österberg M
    Biotechnol Biofuels; 2021 May; 14(1):114. PubMed ID: 33957955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites.
    Mokhena TC; Sefadi JS; Sadiku ER; John MJ; Mochane MJ; Mtibe A
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanocellulose: The Ultimate Green Aqueous Dispersant for Nanomaterials.
    Calvo V; Martínez-Barón C; Fuentes L; Maser WK; Benito AM; González-Domínguez JM
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanocellulose Bio-Based Composites for Food Packaging.
    Silva FAGS; Dourado F; Gama M; Poças F
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. State of Art Manufacturing and Producing Nanocellulose from Agricultural Waste: A Review.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3394-3403. PubMed ID: 34739796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications.
    Aoudi B; Boluk Y; Gamal El-Din M
    Sci Total Environ; 2022 Oct; 843():156903. PubMed ID: 35753453
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient extraction of nanocellulose from lignocellulose using aqueous butanediol fractionation to improve the performance of waterborne wood coating.
    Song X; Zhu Z; Tang S; Chi X; Han G; Cheng W
    Carbohydr Polym; 2023 Dec; 322():121347. PubMed ID: 37839849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanotechnology Applied to Cellulosic Materials.
    Fernandes A; Cruz-Lopes L; Esteves B; Evtuguin D
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sulfonic acid functionalized cellulose-derived (nano)materials: Synthesis and application.
    Sajjadi M; Nasrollahzadeh M; Sattari MR; Ghafuri H; Jaleh B
    Adv Colloid Interface Sci; 2024 Jun; 328():103158. PubMed ID: 38718629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications.
    Patil TV; Patel DK; Dutta SD; Ganguly K; Santra TS; Lim KT
    Bioact Mater; 2022 Mar; 9():566-589. PubMed ID: 34820589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications.
    Pachuau LS
    Mini Rev Med Chem; 2015; 15(7):543-52. PubMed ID: 25877601
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Commercial application of cellulose nano-composites - A review.
    Sharma A; Thakur M; Bhattacharya M; Mandal T; Goswami S
    Biotechnol Rep (Amst); 2019 Mar; 21():e00316. PubMed ID: 30847286
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review.
    Teo HL; Wahab RA
    Int J Biol Macromol; 2020 Oct; 161():1414-1430. PubMed ID: 32791266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Review on the Application of Nanocellulose in Cementitious Materials.
    Guo A; Sun Z; Sathitsuksanoh N; Feng H
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33321839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The versatility of nanocellulose, modification strategies, and its current progress in wastewater treatment and environmental remediation.
    Shahzad A; Ullah MW; Ali J; Aziz K; Javed MA; Shi Z; Manan S; Ul-Islam M; Nazar M; Yang G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159937. PubMed ID: 36343829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient Labeling of Nanocellulose for High-Resolution Fluorescence Microscopy Applications.
    Babi M; Fatona A; Li X; Cerson C; Jarvis VM; Abitbol T; Moran-Mirabal JM
    Biomacromolecules; 2022 May; 23(5):1981-1994. PubMed ID: 35442640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface and Interface Engineering for Nanocellulosic Advanced Materials.
    Yang X; Biswas SK; Han J; Tanpichai S; Li MC; Chen C; Zhu S; Das AK; Yano H
    Adv Mater; 2021 Jul; 33(28):e2002264. PubMed ID: 32902018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials.
    Dai L; Wang Y; Zou X; Chen Z; Liu H; Ni Y
    Small; 2020 Apr; 16(13):e1906567. PubMed ID: 32049432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.