These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33425870)

  • 21. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model.
    Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK
    Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-Mimicking Acellular Wet Electrospun Scaffolds Promote Accelerated Integration and Re-Epithelialization of Full-Thickness Dermal Wounds.
    Chin JS; Madden LE; Phillips ARJ; Chew SY; Becker DL
    Bioengineering (Basel); 2022 Jul; 9(7):. PubMed ID: 35877375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.
    Mehr NG; Li X; Chen G; Favis BD; Hoemann CD
    J Biomed Mater Res A; 2015 Jul; 103(7):2449-59. PubMed ID: 25504184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo.
    Mohiti-Asli M; Saha S; Murphy SV; Gracz H; Pourdeyhimi B; Atala A; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):327-339. PubMed ID: 26509902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution.
    Zahiri M; Khanmohammadi M; Goodarzi A; Ababzadeh S; Sagharjoghi Farahani M; Mohandesnezhad S; Bahrami N; Nabipour I; Ai J
    Int J Biol Macromol; 2020 Jun; 153():1241-1250. PubMed ID: 31759002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of a collagen-elastin matrix as transport carrier system to transfer proliferating epidermal cells to human dermis in vitro.
    Waaijman T; Breetveld M; Ulrich M; Middelkoop E; Scheper RJ; Gibbs S
    Cell Transplant; 2010; 19(10):1339-48. PubMed ID: 20525428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Influence of human amniotic mesenchymal stem cells on macrophage phenotypes and inflammatory factors in full-thickness skin wounds of mice].
    Shi CS; Wang DL; Sun J; Yang QX; Wei ZR; Deng CL; Xu GC; Huang GT; Xiao SE
    Zhonghua Shao Shang Za Zhi; 2020 Apr; 36(4):288-296. PubMed ID: 32340419
    [No Abstract]   [Full Text] [Related]  

  • 30. An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds.
    Kobsa S; Kristofik NJ; Sawyer AJ; Bothwell AL; Kyriakides TR; Saltzman WM
    Biomaterials; 2013 May; 34(15):3891-901. PubMed ID: 23453058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing improved tissue-engineered buccal mucosa grafts for urethral reconstruction.
    Simsek A; Bullock AJ; Roman S; Chapple CR; Macneil S
    Can Urol Assoc J; 2018 May; 12(5):E234-E242. PubMed ID: 29405909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing.
    Dubský M; Kubinová S; Sirc J; Voska L; Zajíček R; Zajícová A; Lesný P; Jirkovská A; Michálek J; Munzarová M; Holáň V; Syková E
    J Mater Sci Mater Med; 2012 Apr; 23(4):931-41. PubMed ID: 22331377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing.
    Millán-Rivero JE; Martínez CM; Romecín PA; Aznar-Cervantes SD; Carpes-Ruiz M; Cenis JL; Moraleda JM; Atucha NM; García-Bernal D
    Stem Cell Res Ther; 2019 Apr; 10(1):126. PubMed ID: 31029166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells.
    Fang R; Zhang E; Xu L; Wei S
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7747-51. PubMed ID: 21138024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.
    Lv F; Wang J; Xu P; Han Y; Ma H; Xu H; Chen S; Chang J; Ke Q; Liu M; Yi Z; Wu C
    Acta Biomater; 2017 Sep; 60():128-143. PubMed ID: 28713016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds.
    Marei NH; El-Sherbiny IM; Lotfy A; El-Badawy A; El-Badri N
    Int J Biol Macromol; 2016 Dec; 93(Pt A):9-19. PubMed ID: 27554939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis.
    Li Y; Liu Z; Tang Y; Fan Q; Feng W; Luo C; Dai G; Ge Z; Zhang J; Zou G; Liu Y; Hu N; Huang W
    Acta Biochim Biophys Sin (Shanghai); 2020 Jun; 52(6):590-602. PubMed ID: 32393968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of Capability of Human Bone Marrow Mesenchymal Stem Cells and Endometrial Stem Cells to Differentiate into Motor Neurons on Electrospun Poly(ε-caprolactone) Scaffold.
    Shirian S; Ebrahimi-Barough S; Saberi H; Norouzi-Javidan A; Mousavi SM; Derakhshan MA; Arjmand B; Ai J
    Mol Neurobiol; 2016 Oct; 53(8):5278-87. PubMed ID: 26420037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Osteogenic and Tenogenic Differentiation Potential of C3H10T1/2 (Mesenchymal Stem Cell Model) Cultured on PCL/PLA Electrospun Scaffolds in the Absence of Specific Differentiation Medium.
    Baudequin T; Gaut L; Mueller M; Huepkes A; Glasmacher B; Duprez D; Bedoui F; Legallais C
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histological processing of un-/cellularized thermosensitive electrospun scaffolds.
    Fuchs J; Mueller M; Daxböck C; Stückler M; Lang I; Leitinger G; Bock E; El-Heliebi A; Moser G; Glasmacher B; Brislinger D
    Histochem Cell Biol; 2019 Apr; 151(4):343-356. PubMed ID: 30560287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.