These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33426880)
21. A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24. Xie L; Liu J; Li J; Liu C; Pu Z; Xu P; Wang Y; Meng Y; Yang M; Ge Z Adv Mater; 2023 Sep; 35(38):e2302752. PubMed ID: 37308171 [TBL] [Abstract][Full Text] [Related]
22. Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls. Hwang T; Yun AJ; Kim J; Cho D; Kim S; Hong S; Park B ACS Appl Mater Interfaces; 2019 Feb; 11(7):6907-6917. PubMed ID: 30668095 [TBL] [Abstract][Full Text] [Related]
23. Surface Defect Passivation and Energy Level Alignment Engineering with a Fluorine-Substituted Hole Transport Material for Efficient Perovskite Solar Cells. Tao L; Wang B; Wang H; Chen C; Ding X; Tian Y; Lu H; Yang X; Cheng M ACS Appl Mater Interfaces; 2021 Mar; 13(11):13470-13477. PubMed ID: 33705094 [TBL] [Abstract][Full Text] [Related]
24. Dual-Interface Engineering in Perovskite Solar Cells with 2D Carbides. He J; Hu G; Jiang Y; Zeng S; Niu G; Feng G; Liu Z; Yang K; Shao C; Zhao Y; Wang F; Li Y; Wang J Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202311865. PubMed ID: 37615050 [TBL] [Abstract][Full Text] [Related]
25. Solution-processed p-type nanocrystalline CoO films for inverted mixed perovskite solar cells. Li B; Rui Y; Xu J; Wang Y; Yang J; Zhang Q; Müller-Buschbaum P J Colloid Interface Sci; 2020 Aug; 573():78-86. PubMed ID: 32259694 [TBL] [Abstract][Full Text] [Related]
26. Electronic Coordination Effect of the Regulator on Perovskite Crystal Growth and Its High-Performance Solar Cells. Li J; Dong X; Liu T; Liu H; Wang S; Li X ACS Appl Mater Interfaces; 2020 Apr; 12(17):19439-19446. PubMed ID: 32252516 [TBL] [Abstract][Full Text] [Related]
27. Improved photovoltaic performance of perovskite solar cells based on three-dimensional rutile TiO Chen C; Wu S; Wang J; Chen S; Peng T; Li R Nanoscale; 2018 Nov; 10(44):20836-20843. PubMed ID: 30403213 [TBL] [Abstract][Full Text] [Related]
28. Nicotinamide as Additive for Microcrystalline and Defect Passivated Perovskite Solar Cells with 21.7% Efficiency. Ma Z; Zhou W; Huang D; Liu Q; Xiao Z; Jiang H; Yang Z; Zhang W; Huang Y ACS Appl Mater Interfaces; 2020 Nov; 12(47):52500-52508. PubMed ID: 33170633 [TBL] [Abstract][Full Text] [Related]
29. Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates. Dou Y; Wang D; Li G; Liao Y; Sun W; Wu J; Lan Z ACS Appl Mater Interfaces; 2019 Sep; 11(35):32159-32168. PubMed ID: 31403271 [TBL] [Abstract][Full Text] [Related]
31. Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. Yang J; Xiong S; Qu T; Zhang Y; He X; Guo X; Zhao Q; Braun S; Chen J; Xu J; Li Y; Liu X; Duan C; Tang J; Fahlman M; Bao Q ACS Appl Mater Interfaces; 2019 Apr; 11(14):13491-13498. PubMed ID: 30880387 [TBL] [Abstract][Full Text] [Related]
32. Lewis-Acid Doping of Triphenylamine-Based Hole Transport Materials Improves the Performance and Stability of Perovskite Solar Cells. Liu J; Liu W; Aydin E; Harrison GT; Isikgor FH; Yang X; Subbiah AS; De Wolf S ACS Appl Mater Interfaces; 2020 May; 12(21):23874-23884. PubMed ID: 32412735 [TBL] [Abstract][Full Text] [Related]
33. Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems. Dewi HA; Wang H; Li J; Thway M; Sridharan R; Stangl R; Lin F; Aberle AG; Mathews N; Bruno A; Mhaisalkar S ACS Appl Mater Interfaces; 2019 Sep; 11(37):34178-34187. PubMed ID: 31442024 [TBL] [Abstract][Full Text] [Related]
34. Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells. Kegelmann L; Tockhorn P; Wolff CM; Márquez JA; Caicedo-Dávila S; Korte L; Unold T; Lövenich W; Neher D; Rech B; Albrecht S ACS Appl Mater Interfaces; 2019 Mar; 11(9):9172-9181. PubMed ID: 30741517 [TBL] [Abstract][Full Text] [Related]
35. Suppressing Defects-Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Xu W; Gao Y; Ming W; He F; Li J; Zhu XH; Kang F; Li J; Wei G Adv Mater; 2020 Sep; 32(38):e2003965. PubMed ID: 32767422 [TBL] [Abstract][Full Text] [Related]
36. Enhanced Efficiency of Planar Heterojunction Perovskite Solar Cells by a Light Soaking Treatment on Tris(pentafluorophenyl)borane-Doped Poly(triarylamine) Solution. Ye T; Chen W; Jin S; Hao S; Zhang X; Liu H; He D ACS Appl Mater Interfaces; 2019 Apr; 11(15):14004-14010. PubMed ID: 30912915 [TBL] [Abstract][Full Text] [Related]
37. Zwitterionic ionic liquid synergistically induces interfacial dipole formation and traps state passivation for high-performance perovskite solar cells. Shang X; Ma X; Meng F; Ma J; Yang L; Li M; Gao D; Chen C J Colloid Interface Sci; 2023 Jan; 630(Pt B):155-163. PubMed ID: 36327719 [TBL] [Abstract][Full Text] [Related]
38. Influence of Cl Incorporation in Perovskite Precursor on the Crystal Growth and Storage Stability of Perovskite Solar Cells. Zhang H; Lv Y; Wang J; Ma H; Sun Z; Huang W ACS Appl Mater Interfaces; 2019 Feb; 11(6):6022-6030. PubMed ID: 30652851 [TBL] [Abstract][Full Text] [Related]
39. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of PbI Chen Y; Meng Q; Xiao Y; Zhang X; Sun J; Han CB; Gao H; Zhang Y; Lu Y; Yan H ACS Appl Mater Interfaces; 2019 Nov; 11(47):44101-44108. PubMed ID: 31680509 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]