BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 33426882)

  • 1. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations.
    Damjanovic J; Miao J; Huang H; Lin YS
    Chem Rev; 2021 Feb; 121(4):2292-2324. PubMed ID: 33426882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into How Cyclic Peptides Switch Conformations.
    McHugh SM; Rogers JR; Yu H; Lin YS
    J Chem Theory Comput; 2016 May; 12(5):2480-8. PubMed ID: 27031286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Well-Structured Cyclic Pentapeptides Based on Sequence-Structure Relationships.
    Slough DP; McHugh SM; Cummings AE; Dai P; Pentelute BL; Kritzer JA; Lin YS
    J Phys Chem B; 2018 Apr; 122(14):3908-3919. PubMed ID: 29589926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide [Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly].
    Buono RA; Kucharczyk N; Neuenschwander M; Kemmink J; Hwang LY; Fauchère JL; Venanzi CA
    J Comput Aided Mol Des; 1996 Jun; 10(3):213-32. PubMed ID: 8808738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions.
    Duffy F; Maheshwari N; Buchete NV; Shields D
    Methods Mol Biol; 2019; 2001():73-95. PubMed ID: 31134568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Simulation of Conformational Pre-Organization in Cyclic RGD Peptides.
    Wakefield AE; Wuest WM; Voelz VA
    J Chem Inf Model; 2015 Apr; 55(4):806-13. PubMed ID: 25741627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational methods to design cyclic peptides.
    McHugh SM; Rogers JR; Solomon SA; Yu H; Lin YS
    Curr Opin Chem Biol; 2016 Oct; 34():95-102. PubMed ID: 27592259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Methods for Studying Conformational Behaviors of Cyclic Peptides.
    Jiang F; Geng H
    Methods Mol Biol; 2019; 2001():61-71. PubMed ID: 31134567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic peptides: backbone rigidification and capability of mimicking motifs at protein-protein interfaces.
    Huang H; Damjanovic J; Miao J; Lin YS
    Phys Chem Chem Phys; 2021 Jan; 23(1):607-616. PubMed ID: 33331371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic Peptide Linker Design and Optimization by Molecular Dynamics Simulations.
    Yu L; Barros SA; Sun C; Somani S
    J Chem Inf Model; 2023 Nov; 63(21):6863-6876. PubMed ID: 37903231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward structure prediction of cyclic peptides.
    Yu H; Lin YS
    Phys Chem Chem Phys; 2015 Feb; 17(6):4210-9. PubMed ID: 25566700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles.
    Hui T; Descoteaux ML; Miao J; Lin YS
    J Chem Theory Comput; 2023 Jul; 19(14):4757-4769. PubMed ID: 37236147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis.
    Farley KA; Che Y; Navarro-Vázquez A; Limberakis C; Anderson D; Yan J; Shapiro M; Shanmugasundaram V; Gil RR
    J Org Chem; 2019 Apr; 84(8):4803-4813. PubMed ID: 30605335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding affinity difference induced by the stereochemistry of the sulfoxide bridge of the cyclic peptide inhibitors of Grb2-SH2 domain: NMR studies for the structural origin.
    Shi YH; Song YL; Lin DH; Tan J; Roller PP; Li Q; Long YQ; Song GQ
    Biochem Biophys Res Commun; 2005 May; 330(4):1254-61. PubMed ID: 15823578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exhaustive Exploration of the Conformational Landscape of Small Cyclic Peptides Using a Robotics Approach.
    Jusot M; Stratmann D; Vaisset M; Chomilier J; Cortés J
    J Chem Inf Model; 2018 Nov; 58(11):2355-2368. PubMed ID: 30299093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution conformation of a cyclic neurokinin antagonist: a NMR and molecular dynamics study.
    Zhang M; Quinn TP; Wong TC
    Biopolymers; 1994 Sep; 34(9):1165-73. PubMed ID: 7948730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward accurately modeling N-methylated cyclic peptides.
    Slough DP; Yu H; McHugh SM; Lin YS
    Phys Chem Chem Phys; 2017 Feb; 19(7):5377-5388. PubMed ID: 28155950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides.
    Gurrath M; Müller G; Kessler H; Aumailley M; Timpl R
    Eur J Biochem; 1992 Dec; 210(3):911-21. PubMed ID: 1483474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approaches to developing short cyclic peptide modulators of protein-protein interactions.
    Duffy FJ; Devocelle M; Shields DC
    Methods Mol Biol; 2015; 1268():241-71. PubMed ID: 25555728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.