These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33426988)

  • 1. The impact of data selection and fitting on SAR estimation for magnetic nanoparticle heating.
    Ring HL; Sharma A; Ivkov R; Bischof JC
    Int J Hyperthermia; 2020 Dec; 37(3):100-107. PubMed ID: 33426988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic fluid hyperthermia simulations in evaluation of SAR calculation methods.
    Papadopoulos C; Efthimiadou EK; Pissas M; Fuentes D; Boukos N; Psycharis V; Kordas G; Loukopoulos VC; Kagadis GC
    Phys Med; 2020 Mar; 71():39-52. PubMed ID: 32088564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.
    Coïsson M; Barrera G; Celegato F; Martino L; Kane SN; Raghuvanshi S; Vinai F; Tiberto P
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1545-1558. PubMed ID: 27986628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.
    Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J
    Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687
    [No Abstract]   [Full Text] [Related]  

  • 5. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis.
    Carlton H; Ivkov R
    J Appl Phys; 2023 Jan; 133(4):044302. PubMed ID: 36718210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepped heating procedure for experimental SAR evaluation of ferrofluids.
    Iacob N; Schinteie G; Palade P; Ticos CM; Kuncser V
    Eur Phys J E Soft Matter; 2015 Jun; 38(6):57. PubMed ID: 26087918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia.
    Natividad E; Castro M; Goglio G; Andreu I; Epherre R; Duguet E; Mediano A
    Nanoscale; 2012 Jul; 4(13):3954-62. PubMed ID: 22653748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.
    Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS
    J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of heating rate and specific absorption rate in the hyperthermia clinic.
    Chou CK
    Int J Hyperthermia; 1990; 6(2):367-70. PubMed ID: 2324575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: a Monte Carlo study of shape and size effects.
    Vasilakaki M; Binns C; Trohidou KN
    Nanoscale; 2015 May; 7(17):7753-62. PubMed ID: 25836990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe
    Lemine OM; Algessair S; Madkhali N; Al-Najar B; El-Boubbou K
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments.
    Rubia-Rodríguez I; Zilberti L; Arduino A; Bottauscio O; Chiampi M; Ortega D
    Int J Hyperthermia; 2021; 38(1):846-861. PubMed ID: 34074196
    [No Abstract]   [Full Text] [Related]  

  • 16. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia.
    Ortega-Julia J; Ortega D; Leliaert J
    Nanoscale; 2023 Jun; 15(24):10342-10350. PubMed ID: 37288522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia.
    Jordan A; Wust P; Fähling H; John W; Hinz A; Felix R
    Int J Hyperthermia; 1993; 9(1):51-68. PubMed ID: 8433026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural perspective on revealing heat dissipation behavior of CoFe
    Shams SF; Ghazanfari MR; Pettinger S; Tavabi AH; Siemensmeyer K; Smekhova A; Dunin-Borkowski RE; Westmeyer GG; Schmitz-Antoniak C
    Phys Chem Chem Phys; 2020 Dec; 22(46):26728-26741. PubMed ID: 33078790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods.
    Dillon CR; Payne A; Christensen DA; Roemer RB
    Int J Hyperthermia; 2014 Sep; 30(6):362-71. PubMed ID: 25198092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.