These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33426989)

  • 1.
    Rodrigues HF; Capistrano G; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):76-99. PubMed ID: 33426989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive intratumoral thermal dose determination during
    Capistrano G; Rodrigues HF; Zufelato N; Gonçalves C; Cardoso CG; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):120-140. PubMed ID: 33426991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia.
    LeBrun A; Joglekar T; Bieberich C; Ma R; Zhu L
    Int J Hyperthermia; 2016; 32(2):132-43. PubMed ID: 26758242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of thermometry in magnetic hyperthermia cancer therapy: antecedence and aftermath.
    Kaur T; Sharma D
    Nanomedicine (Lond); 2022 Sep; 17(21):1607-1623. PubMed ID: 36318111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.
    Raouf I; Khalid S; Khan A; Lee J; Kim HS; Kim MH
    J Therm Biol; 2020 Jul; 91():102644. PubMed ID: 32716885
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Buchholz O; Sajjamark K; Franke J; Wei H; Behrends A; Münkel C; Grüttner C; Levan P; von Elverfeldt D; Graeser M; Buzug T; Bär S; Hofmann UG
    Theranostics; 2024; 14(1):324-340. PubMed ID: 38164157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical magnetic hyperthermia requires integrated magnetic particle imaging.
    Healy S; Bakuzis AF; Goodwill PW; Attaluri A; Bulte JWM; Ivkov R
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 May; 14(3):e1779. PubMed ID: 35238181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method.
    Al-Bataineh OM; Collins CM; Park EJ; Lee H; Smith NB
    Biomed Eng Online; 2006 Oct; 5():56. PubMed ID: 17064421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe
    Suleman M; Riaz S
    J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head.
    Bellizzi G; Bucci OM; Chirico G
    Int J Hyperthermia; 2016 Sep; 32(6):688-703. PubMed ID: 27268850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaching Deeper: Absolute In Vivo Thermal Reading of Liver by Combining Superbright Ag
    Lifante J; Shen Y; Zabala Gutierrez I; Rubia-Rodríguez I; Ortega D; Fernandez N; Melle S; Granado M; Rubio-Retama J; Jaque D; Ximendes E
    Adv Sci (Weinh); 2021 May; 8(9):2003838. PubMed ID: 33977056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.