These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 33426990)
1. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990 [TBL] [Abstract][Full Text] [Related]
2. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process. Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266 [TBL] [Abstract][Full Text] [Related]
3. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449 [TBL] [Abstract][Full Text] [Related]
4. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Attaluri A; Kandala SK; Wabler M; Zhou H; Cornejo C; Armour M; Hedayati M; Zhang Y; DeWeese TL; Herman C; Ivkov R Int J Hyperthermia; 2015 Jun; 31(4):359-74. PubMed ID: 25811736 [TBL] [Abstract][Full Text] [Related]
5. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer. Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560 [TBL] [Abstract][Full Text] [Related]
6. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. Kandala SK; Sharma A; Mirpour S; Liapi E; Ivkov R; Attaluri A Int J Hyperthermia; 2021; 38(1):611-622. PubMed ID: 33853493 [TBL] [Abstract][Full Text] [Related]
7. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease. Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509 [TBL] [Abstract][Full Text] [Related]
8. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Kalber TL; Ordidge KL; Southern P; Loebinger MR; Kyrtatos PG; Pankhurst QA; Lythgoe MF; Janes SM Int J Nanomedicine; 2016; 11():1973-83. PubMed ID: 27274229 [TBL] [Abstract][Full Text] [Related]
9. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799 [TBL] [Abstract][Full Text] [Related]
10. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia. Demessie AA; Park Y; Singh P; Moses AS; Korzun T; Sabei FY; Albarqi HA; Campos L; Wyatt CR; Farsad K; Dhagat P; Sun C; Taratula OR; Taratula O Small Methods; 2022 Dec; 6(12):e2200916. PubMed ID: 36319445 [TBL] [Abstract][Full Text] [Related]
11. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Wang L; Dong J; Ouyang W; Wang X; Tang J Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718 [TBL] [Abstract][Full Text] [Related]
12. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354 [TBL] [Abstract][Full Text] [Related]
13. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050 [TBL] [Abstract][Full Text] [Related]
14. Intratumoral Iron Oxide Nanoparticle Hyperthermia and Radiation Cancer Treatment. Hoopes P; Strawbridge R; Gibson U; Zeng Q; Pierce Z; Savellano M; Tate J; Ogden J; Baker I; Ivkov R; Foreman A Proc SPIE Int Soc Opt Eng; 2007 Feb; 6440():64400K. PubMed ID: 25301985 [TBL] [Abstract][Full Text] [Related]
15. Alternating magnetic field guiding system for MNP hyperthermia treatment of deep-seated cancers. Stigliano RV; Danelyan I; Gabriadze G; Shoshiashvili L; Baker I; Hoopes PJ; Jobava R; Shubitidze F Int J Hyperthermia; 2024; 41(1):2391008. PubMed ID: 39205623 [TBL] [Abstract][Full Text] [Related]
16. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia. Soetaert F; Dupré L; Ivkov R; Crevecoeur G Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900 [TBL] [Abstract][Full Text] [Related]
17. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
18. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199 [TBL] [Abstract][Full Text] [Related]
19. Biodegraded magnetosomes with reduced size and heating power maintain a persistent activity against intracranial U87-Luc mouse GBM tumors. Alphandéry E; Idbaih A; Adam C; Delattre JY; Schmitt C; Gazeau F; Guyot F; Chebbi I J Nanobiotechnology; 2019 Dec; 17(1):126. PubMed ID: 31870376 [TBL] [Abstract][Full Text] [Related]
20. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia. Nieskoski MD; Trembly BS IEEE Trans Biomed Eng; 2014 Jun; 61(6):1642-50. PubMed ID: 24691525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]