BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33426991)

  • 1. Noninvasive intratumoral thermal dose determination during
    Capistrano G; Rodrigues HF; Zufelato N; Gonçalves C; Cardoso CG; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):120-140. PubMed ID: 33426991
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Rodrigues HF; Capistrano G; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):76-99. PubMed ID: 33426989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography.
    Rodrigues HF; Capistrano G; Mello FM; Zufelato N; Silveira-Lacerda E; Bakuzis AF
    Phys Med Biol; 2017 May; 62(10):4062-4082. PubMed ID: 28306552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia.
    Kandala SK; Sharma A; Mirpour S; Liapi E; Ivkov R; Attaluri A
    Int J Hyperthermia; 2021; 38(1):611-622. PubMed ID: 33853493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia.
    LeBrun A; Joglekar T; Bieberich C; Ma R; Zhu L
    Int J Hyperthermia; 2016; 32(2):132-43. PubMed ID: 26758242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe
    Suleman M; Riaz S
    J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.
    Papadopoulos C; Kolokithas-Ntoukas A; Moreno R; Fuentes D; Loudos G; Loukopoulos VC; Kagadis GC
    Med Phys; 2022 Jan; 49(1):547-567. PubMed ID: 34724215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodology for determining optimal thermal damage in magnetic nanoparticle hyperthermia cancer treatment.
    Mital M; Tafreshi HV
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):205-13. PubMed ID: 25099326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia.
    Kneepkens E; Heijman E; Keupp J; Weiss S; Nicolay K; Grüll H
    Invest Radiol; 2017 Oct; 52(10):620-630. PubMed ID: 28598900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments.
    Rubia-Rodríguez I; Zilberti L; Arduino A; Bottauscio O; Chiampi M; Ortega D
    Int J Hyperthermia; 2021; 38(1):846-861. PubMed ID: 34074196
    [No Abstract]   [Full Text] [Related]  

  • 17. Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head.
    Bellizzi G; Bucci OM; Chirico G
    Int J Hyperthermia; 2016 Sep; 32(6):688-703. PubMed ID: 27268850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia.
    Lebrun A; Manuchehrabadi N; Attaluri A; Wang F; Ma R; Zhu L
    Int J Hyperthermia; 2013 Dec; 29(8):730-8. PubMed ID: 24074039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artefacts in intracavitary temperature measurements during regional hyperthermia.
    Kok HP; Van den Berg CA; Van Haaren PM; Crezee J
    Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations.
    Verhaart RF; Verduijn GM; Fortunati V; Rijnen Z; van Walsum T; Veenland JF; Paulides MM
    Int J Hyperthermia; 2015; 31(6):686-92. PubMed ID: 26134740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.