BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 33426995)

  • 1. Using nanoparticles for
    Gorbet MJ; Singh A; Mao C; Fiering S; Ranjan A
    Int J Hyperthermia; 2020 Dec; 37(3):18-33. PubMed ID: 33426995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ vaccination: Harvesting low hanging fruit on the cancer immunotherapy tree.
    Sheen MR; Fiering S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1524. PubMed ID: 29667346
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Mao C; Gorbet MJ; Singh A; Ranjan A; Fiering S
    Int J Hyperthermia; 2020 Dec; 37(3):4-17. PubMed ID: 33455477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade.
    Mao C; Beiss V; Ho GW; Fields J; Steinmetz NF; Fiering S
    J Immunother Cancer; 2022 Dec; 10(12):. PubMed ID: 36460333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alfalfa mosaic virus nanoparticles-based
    Shahgolzari M; Pazhouhandeh M; Milani M; Fiering S; Khosroushahi AY
    Nanomedicine (Lond); 2021 Jan; 16(2):97-107. PubMed ID: 33442986
    [No Abstract]   [Full Text] [Related]  

  • 6. Combining
    Kalami A; Shahgolzari M; Khosroushahi AY; Fiering S
    Immunotherapy; 2023 Apr; 15(5):367-381. PubMed ID: 36852419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination.
    Chen PM; Pan WY; Wu CY; Yeh CY; Korupalli C; Luo PK; Chou CJ; Chia WT; Sung HW
    Biomaterials; 2020 Feb; 230():119629. PubMed ID: 31767446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer.
    Stephen ZR; Zhang M
    Adv Healthc Mater; 2021 Jan; 10(2):e2001415. PubMed ID: 33236511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles.
    Yu Q; Tang X; Zhao W; Qiu Y; He J; Wan D; Li J; Wang X; He X; Liu Y; Li M; Zhang Z; He Q
    Acta Biomater; 2021 Oct; 133():244-256. PubMed ID: 34000465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Functionalized Modified Copper Sulfide Nanoparticles Enhance Checkpoint Blockade Tumor Immunotherapy by Photothermal Therapy and Antigen Capturing.
    Wang R; He Z; Cai P; Zhao Y; Gao L; Yang W; Zhao Y; Gao X; Gao F
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):13964-13972. PubMed ID: 30912920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-dose injectable nanovaccine-in-hydrogel for robust immunotherapy of large tumors with abscopal effect.
    Cheng F; Su T; Zhou S; Liu X; Yang S; Lin S; Guo W; Zhu G
    Sci Adv; 2023 Jul; 9(28):eade6257. PubMed ID: 37450588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune Checkpoint Blockade for Systemic Antitumor Therapy.
    Chao Y; Chen G; Liang C; Xu J; Dong Z; Han X; Wang C; Liu Z
    Nano Lett; 2019 Jul; 19(7):4287-4296. PubMed ID: 31132270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining High-Z Sensitized Radiotherapy with CD73 Blockade to Boost Tumor Immunotherapy.
    Chen Q; Chen J; Zhang Q; Yang P; Gu R; Ren H; Dai Y; Huang S; Wu J; Wu X; Hu Y; Yuan A
    ACS Nano; 2023 Jul; 17(13):12087-12100. PubMed ID: 37327456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Nanoparticle-Based Platforms for Regulating Tumor Microenvironment and Cancer Immunotherapy.
    Cheng R; Santos HA
    Adv Healthc Mater; 2023 Mar; 12(8):e2202063. PubMed ID: 36479842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the Intestinal Lymphatic Transport of Oral Nanoparticles to Educate Macrophages for Cancer Combined Immunotherapy.
    Xu L; Weng S; Li S; Wang K; Shen Y; Xu Y; Tang C; Yin C
    ACS Nano; 2023 Jun; 17(12):11817-11837. PubMed ID: 37318192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulating antitumor immunity with nanoparticles.
    Sheen MR; Lizotte PH; Toraya-Brown S; Fiering S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(5):496-505. PubMed ID: 25069691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation to all macroscopic sites of tumor permits greater systemic antitumor response to in situ vaccination.
    Carlson PM; Patel RB; Birstler J; Rodriquez M; Sun C; Erbe AK; Bates AM; Marsh I; Grudzinski J; Hernandez R; Pieper AA; Feils AS; Rakhmilevich AL; Weichert JP; Bednarz BP; Sondel PM; Morris ZS
    J Immunother Cancer; 2023 Jan; 11(1):. PubMed ID: 36639155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Membrane Nanovaccines Combined with Immune Checkpoint Blockade to Enhance Cancer Immunotherapy.
    Zhao P; Xu Y; Ji W; Li L; Qiu L; Zhou S; Qian Z; Zhang H
    Int J Nanomedicine; 2022; 17():73-89. PubMed ID: 35027827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiotherapy-Triggered In Situ Tumor Vaccination Boosts Checkpoint Blockaded Immune Response via Antigen-Capturing Nanoadjuvants.
    Xu P; Ma J; Zhou Y; Gu Y; Cheng X; Wang Y; Wang Y; Gao M
    ACS Nano; 2024 Jan; 18(1):1022-1040. PubMed ID: 38131289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of CD8
    Zhang Y; Gao X; Yan B; Wen N; Lee WSV; Liang XJ; Liu X
    ChemMedChem; 2022 Jan; 17(2):e202100656. PubMed ID: 34806311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.