BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33426997)

  • 1. Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields.
    Yang CT; Korangath P; Stewart J; Hu C; Fu W; Grüttner C; Beck SE; Lin FH; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):59-75. PubMed ID: 33426997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.
    Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study.
    Attaluri A; Seshadri M; Mirpour S; Wabler M; Marinho T; Furqan M; Zhou H; De Paoli S; Gruettner C; Gilson W; DeWeese T; Garcia M; Ivkov R; Liapi E
    Int J Hyperthermia; 2016 Aug; 32(5):543-57. PubMed ID: 27151045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice.
    Kut C; Zhang Y; Hedayati M; Zhou H; Cornejo C; Bordelon D; Mihalic J; Wabler M; Burghardt E; Gruettner C; Geyh A; Brayton C; Deweese TL; Ivkov R
    Nanomedicine (Lond); 2012 Nov; 7(11):1697-711. PubMed ID: 22830502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immuno-hyperthermia effected by antibody-conjugated nanoparticles selectively targets and eradicates individual cancer cells.
    Kagawa T; Matsumi Y; Aono H; Ohara T; Tazawa H; Shigeyasu K; Yano S; Takeda S; Komatsu Y; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jul; 20(13):1221-1230. PubMed ID: 34148497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.
    Gavilán H; Avugadda SK; Fernández-Cabada T; Soni N; Cassani M; Mai BT; Chantrell R; Pellegrino T
    Chem Soc Rev; 2021 Oct; 50(20):11614-11667. PubMed ID: 34661212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles.
    Chauhan A; Midha S; Kumar R; Meena R; Singh P; Jha SK; Kuanr BK
    Biomater Sci; 2021 Apr; 9(8):2972-2990. PubMed ID: 33635305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells.
    Carvalho SM; Leonel AG; Mansur AAP; Carvalho IC; Krambrock K; Mansur HS
    Biomater Sci; 2019 Apr; 7(5):2102-2122. PubMed ID: 30869664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-regulating novel iron oxide nanoparticle-based magnetic hyperthermia in swine: biocompatibility, biodistribution, and safety assessments.
    Kraus S; Rabinovitz R; Sigalov E; Eltanani M; Khandadash R; Tal C; Rivlin O; Sharaga E; Rukenstein P; Cohen-Erner M; Nyska A; Siman-Tov Y; Shalev O
    Arch Toxicol; 2022 Sep; 96(9):2447-2464. PubMed ID: 35635572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia.
    Park Y; Demessie AA; Luo A; Taratula OR; Moses AS; Do P; Campos L; Jahangiri Y; Wyatt CR; Albarqi HA; Farsad K; Slayden OD; Taratula O
    Small; 2022 Jun; 18(24):e2107808. PubMed ID: 35434932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folic acid-conjugated dextran-coated Zn
    Soleymani M; Poorkhani A; Khalighfard S; Velashjerdi M; Khori V; Khodayari S; Khodayari H; Dehghan M; Alborzi N; Agah S; Alizadeh AM
    Sci Rep; 2023 Aug; 13(1):13560. PubMed ID: 37604883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.
    Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity and Biodistribution of Activated and Non-activated Intravenous Iron Oxide Nanoparticles.
    Tate J; Ogden J; Strawbridge R; Pierce Z; Hoopes P
    Proc SPIE Int Soc Opt Eng; 2009 Feb; 7181():71810L. PubMed ID: 25300674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune Checkpoint Blockade for Systemic Antitumor Therapy.
    Chao Y; Chen G; Liang C; Xu J; Dong Z; Han X; Wang C; Liu Z
    Nano Lett; 2019 Jul; 19(7):4287-4296. PubMed ID: 31132270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution.
    Beola L; Grazú V; Fernández-Afonso Y; Fratila RM; de Las Heras M; de la Fuente JM; Gutiérrez L; Asín L
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12982-12996. PubMed ID: 33709682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple Therapy of HER2
    Zolata H; Afarideh H; Davani FA
    Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.