BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33426997)

  • 21. Enhancement of CD8
    Zhang Y; Gao X; Yan B; Wen N; Lee WSV; Liang XJ; Liu X
    ChemMedChem; 2022 Jan; 17(2):e202100656. PubMed ID: 34806311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy.
    DeNardo SJ; DeNardo GL; Miers LA; Natarajan A; Foreman AR; Gruettner C; Adamson GN; Ivkov R
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7087s-7092s. PubMed ID: 16203807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T
    Zhang J; Ring HL; Hurley KR; Shao Q; Carlson CS; Idiyatullin D; Manuchehrabadi N; Hoopes PJ; Haynes CL; Bischof JC; Garwood M
    Magn Reson Med; 2017 Aug; 78(2):702-712. PubMed ID: 27667655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle.
    Hurley KR; Ring HL; Etheridge M; Zhang J; Gao Z; Shao Q; Klein ND; Szlag VM; Chung C; Reineke TM; Garwood M; Bischof JC; Haynes CL
    Mol Pharm; 2016 Jul; 13(7):2172-83. PubMed ID: 26991550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation.
    Ovejero JG; Armenia I; Serantes D; Veintemillas-Verdaguer S; Zeballos N; López-Gallego F; Grüttner C; de la Fuente JM; Puerto Morales MD; Grazu V
    Nano Lett; 2021 Sep; 21(17):7213-7220. PubMed ID: 34410726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.
    Tong S; Quinto CA; Zhang L; Mohindra P; Bao G
    ACS Nano; 2017 Jul; 11(7):6808-6816. PubMed ID: 28625045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment.
    Hayashi K; Nakamura M; Sakamoto W; Yogo T; Miki H; Ozaki S; Abe M; Matsumoto T; Ishimura K
    Theranostics; 2013; 3(6):366-76. PubMed ID: 23781284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intratumoral Iron Oxide Nanoparticle Hyperthermia and Radiation Cancer Treatment.
    Hoopes P; Strawbridge R; Gibson U; Zeng Q; Pierce Z; Savellano M; Tate J; Ogden J; Baker I; Ivkov R; Foreman A
    Proc SPIE Int Soc Opt Eng; 2007 Feb; 6440():64400K. PubMed ID: 25301985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of iron oxide nanoparticles for MRI-guided magnetic hyperthermia tumor therapy: reassessing the role of shape in their magnetocaloric effect.
    Paez-Muñoz JM; Gámez F; Fernández-Afonso Y; Gallardo R; Pernia Leal M; Gutiérrez L; de la Fuente JM; Caro C; García-Martín ML
    J Mater Chem B; 2023 Nov; 11(46):11110-11120. PubMed ID: 37947078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles.
    Yang CT; Li KY; Meng FQ; Lin JF; Young IC; Ivkov R; Lin FH
    Nanotechnology; 2018 Sep; 29(37):375101. PubMed ID: 29920184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia.
    Zhang J; Dewilde AH; Chinn P; Foreman A; Barry S; Kanne D; Braunhut SJ
    Int J Hyperthermia; 2011; 27(7):682-97. PubMed ID: 21992561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era.
    Pucci C; Degl'Innocenti A; Belenli Gümüş M; Ciofani G
    Biomater Sci; 2022 May; 10(9):2103-2121. PubMed ID: 35316317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content.
    Wabler M; Zhu W; Hedayati M; Attaluri A; Zhou H; Mihalic J; Geyh A; DeWeese TL; Ivkov R; Artemov D
    Int J Hyperthermia; 2014 May; 30(3):192-200. PubMed ID: 24773041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.
    Basel MT; Balivada S; Wang H; Shrestha TB; Seo GM; Pyle M; Abayaweera G; Dani R; Koper OB; Tamura M; Chikan V; Bossmann SH; Troyer DL
    Int J Nanomedicine; 2012; 7():297-306. PubMed ID: 22287840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative heating efficiency and cytotoxicity of magnetic silica nanoparticles for magnetic hyperthermia treatment on human breast cancer cells.
    Acar M; Solak K; Yildiz S; Unver Y; Mavi A
    3 Biotech; 2022 Nov; 12(11):313. PubMed ID: 36276464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.
    Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF
    Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions.
    Hadadian Y; Azimbagirad M; Navas EA; Pavan TZ
    Rev Sci Instrum; 2019 Jul; 90(7):074701. PubMed ID: 31370463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area.
    Kossatz S; Ludwig R; Dähring H; Ettelt V; Rimkus G; Marciello M; Salas G; Patel V; Teran FJ; Hilger I
    Pharm Res; 2014 Dec; 31(12):3274-88. PubMed ID: 24890197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.
    Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J
    Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model.
    Le Renard PE; Buchegger F; Petri-Fink A; Bosman F; Rüfenacht D; Hofmann H; Doelker E; Jordan O
    Int J Hyperthermia; 2009 May; 25(3):229-39. PubMed ID: 19437238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.