BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33427062)

  • 1. Activation of the RAS contributes to peritoneal fibrosis via dysregulation of low-density lipoprotein receptor.
    Liu J; Feng Y; Li N; Shao QY; Zhang QY; Sun C; Xu PF; Jiang CM
    Am J Physiol Renal Physiol; 2021 Mar; 320(3):F273-F284. PubMed ID: 33427062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian Target of Rapamycin Complex 1 Activation Disrupts the Low-Density Lipoprotein Receptor Pathway: A Novel Mechanism for Extracellular Matrix Accumulation in Human Peritoneal Mesothelial Cells.
    Liu J; Zhu W; Jiang CM; Feng Y; Xia YY; Zhang QY; Xu PF; Zhang M
    Am J Nephrol; 2018; 48(5):357-368. PubMed ID: 30423569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin II type 2 receptor prevents extracellular matrix accumulation in human peritoneal mesothelial cell by ameliorating lipid disorder via LOX-1 suppression.
    Liu J; Jin B; Lu J; Feng Y; Li N; Wan C; Zhang QY; Jiang CM
    Ren Fail; 2022 Dec; 44(1):1687-1697. PubMed ID: 36226438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells.
    Lee SH; Kang HY; Kim KS; Nam BY; Paeng J; Kim S; Li JJ; Park JT; Kim DK; Han SH; Yoo TH; Kang SW
    Lab Invest; 2012 Dec; 92(12):1698-711. PubMed ID: 23007133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valsartan ameliorates high glucose-induced peritoneal fibrosis by blocking mTORC1 signaling.
    Liu J; Feng Y; Sun C; Zhu W; Zhang QY; Jin B; Shao QY; Xia YY; Xu PF; Zhang M; Jiang CM
    Exp Biol Med (Maywood); 2020 Jun; 245(11):983-993. PubMed ID: 32408765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis.
    Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N
    J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitro-oleic acid inhibits the high glucose-induced epithelial-mesenchymal transition in peritoneal mesothelial cells and attenuates peritoneal fibrosis.
    Su W; Wang H; Feng Z; Sun J
    Am J Physiol Renal Physiol; 2020 Feb; 318(2):F457-F467. PubMed ID: 31760768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serum response factor accelerates the high glucose-induced Epithelial-to-Mesenchymal Transition (EMT) via snail signaling in human peritoneal mesothelial cells.
    He L; Lou W; Ji L; Liang W; Zhou M; Xu G; Zhao L; Huang C; Li R; Wang H; Chen X; Sun S
    PLoS One; 2014; 9(10):e108593. PubMed ID: 25303231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of IGF-1R in epithelial-mesenchymal transdifferentiation of human peritoneal mesothelial cells.
    Xia Y; Wan C; Zhang Q; Wang H; Feng Y; Jiang C
    Clin Exp Nephrol; 2022 Jul; 26(7):630-639. PubMed ID: 35325324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid disorder and intrahepatic renin-angiotensin system activation synergistically contribute to non-alcoholic fatty liver disease.
    Wu Y; Ma KL; Zhang Y; Wen Y; Wang GH; Hu ZB; Liu L; Lu J; Chen PP; Ruan XZ; Liu BC
    Liver Int; 2016 Oct; 36(10):1525-34. PubMed ID: 27028410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose.
    Yang X; Bao M; Fang Y; Yu X; Ji J; Ding X
    J Transl Med; 2021 Jun; 19(1):283. PubMed ID: 34193173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-6
    Yang X; Yan H; Jiang N; Yu Z; Yuan J; Ni Z; Fang W
    Am J Physiol Renal Physiol; 2020 Feb; 318(2):F338-F353. PubMed ID: 31841386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-21 contributes to high glucose-induced fibrosis in peritoneal mesothelial cells in rat models by activation of the Ras-MAPK signaling pathway via Sprouty-1.
    Gao Q; Xu L; Yang Q; Guan TJ
    J Cell Physiol; 2019 May; 234(5):5915-5925. PubMed ID: 30515805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A selective cyclooxygenase-2 inhibitor decreases transforming growth factor-beta1 synthesis and matrix production in human peritoneal mesothelial cells.
    Liu H; Peng Y; Liu F; Li J; Chen X; Liu Y; Zhang H
    Cell Biol Int; 2007 May; 31(5):508-15. PubMed ID: 17196403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling.
    Shentu Y; Li Y; Xie S; Jiang H; Sun S; Lin R; Chen C; Bai Y; Zhang Y; Zheng C; Zhou Y
    Int Immunopharmacol; 2021 Apr; 93():107374. PubMed ID: 33517222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc supplementation inhibits the high glucose‑induced EMT of peritoneal mesothelial cells by activating the Nrf2 antioxidant pathway.
    Gao L; Fan Y; Zhang X; Yang L; Huang W; Hang T; Li M; Du S; Ma J
    Mol Med Rep; 2019 Jul; 20(1):655-663. PubMed ID: 31115566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of CIP4 in high glucose induced epithelial--mesenchymal transition of rat peritoneal mesothelial cells.
    Zhang J; Bi M; Zhong F; Jiao X; Zhang D; Dong Q
    Ren Fail; 2013 Aug; 35(7):989-95. PubMed ID: 23819628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MiR-200a negatively regulates TGF-β
    Guo R; Hao G; Bao Y; Xiao J; Zhan X; Shi X; Luo L; Zhou J; Chen Q; Wei X
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1087-F1095. PubMed ID: 29357421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twist contributes to proliferation and epithelial-to-mesenchymal transition-induced fibrosis by regulating YB-1 in human peritoneal mesothelial cells.
    He L; Che M; Hu J; Li S; Jia Z; Lou W; Li C; Yang J; Sun S; Wang H; Chen X
    Am J Pathol; 2015 Aug; 185(8):2181-93. PubMed ID: 26055210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapamycin inhibits peritoneal fibrosis by modifying lipid homeostasis in the peritoneum.
    Liu J; Jiang CM; Feng Y; Zhu W; Jin B; Xia YY; Zhang QY; Xu PF; Zhang M
    Am J Transl Res; 2019; 11(3):1473-1485. PubMed ID: 30972175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.