These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 33427102)
1. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. Souza PFN; Amaral JL; Bezerra LP; Lopes FES; Freire VN; Oliveira JTA; Freitas CDT J Biomol Struct Dyn; 2022 Aug; 40(12):5493-5506. PubMed ID: 33427102 [TBL] [Abstract][Full Text] [Related]
2. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122 [TBL] [Abstract][Full Text] [Related]
3. An Stalin A; Lin D; Senthamarai Kannan B; Feng Y; Wang Y; Zhao W; Ignacimuthu S; Wei DQ; Chen Y J Biomol Struct Dyn; 2022 Oct; 40(16):7408-7423. PubMed ID: 33685364 [TBL] [Abstract][Full Text] [Related]
4. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions. Day CJ; Bailly B; Guillon P; Dirr L; Jen FE; Spillings BL; Mak J; von Itzstein M; Haselhorst T; Jennings MP mBio; 2021 Mar; 12(2):. PubMed ID: 33785634 [TBL] [Abstract][Full Text] [Related]
5. A potential peptide inhibitor of SARS-CoV-2 S and human ACE2 complex. Jaiswal G; Yaduvanshi S; Kumar V J Biomol Struct Dyn; 2022 Sep; 40(14):6671-6681. PubMed ID: 33645443 [TBL] [Abstract][Full Text] [Related]
6. Withanone from Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Othman H; Bouslama Z; Brandenburg JT; da Rocha J; Hamdi Y; Ghedira K; Srairi-Abid N; Hazelhurst S Biochem Biophys Res Commun; 2020 Jun; 527(3):702-708. PubMed ID: 32410735 [TBL] [Abstract][Full Text] [Related]
8. Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. Basit A; Ali T; Rehman SU J Biomol Struct Dyn; 2021 Jul; 39(10):3605-3614. PubMed ID: 32396773 [TBL] [Abstract][Full Text] [Related]
9. Computational exploration of natural peptides targeting ACE2. He M; Wang Y; Huang S; Zhao N; Cheng M; Zhang X J Biomol Struct Dyn; 2022 Oct; 40(17):8018-8029. PubMed ID: 33826484 [TBL] [Abstract][Full Text] [Related]
10. Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: a molecular dynamics simulations study. Dehury B; Raina V; Misra N; Suar M J Biomol Struct Dyn; 2021 Nov; 39(18):7231-7245. PubMed ID: 32762417 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of SARS-CoV-2 pathogenesis by potent peptides designed by the mutation of ACE2 binding region. Pourmand S; Zareei S; Shahlaei M; Moradi S Comput Biol Med; 2022 Jul; 146():105625. PubMed ID: 35688710 [TBL] [Abstract][Full Text] [Related]
12. Tinocordiside from Balkrishna A; Pokhrel S; Varshney A Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372 [TBL] [Abstract][Full Text] [Related]
13. Combined use of the hepatitis C drugs and amentoflavone could interfere with binding of the spike glycoprotein of SARS-CoV-2 to ACE2: the results of a molecular simulation study. Miroshnychenko KV; Shestopalova AV J Biomol Struct Dyn; 2022; 40(19):8672-8686. PubMed ID: 33896392 [TBL] [Abstract][Full Text] [Related]
14. Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor. Veeramachaneni GK; Thunuguntla VBSC; Bobbillapati J; Bondili JS J Biomol Struct Dyn; 2021 Jul; 39(11):4015-4025. PubMed ID: 32448098 [TBL] [Abstract][Full Text] [Related]
15. Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein. Pei P; Qin H; Chen J; Wang F; He C; He S; Hong B; Liu K; Qiao R; Fan H; Tong Y; Chen L; Luo SZ Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34180984 [TBL] [Abstract][Full Text] [Related]
16. Atomistic insight into the essential binding event of ACE2-derived peptides to the SARS-CoV-2 spike protein. Sarto C; Florez-Rueda S; Arrar M; Hackenberger CPR; Lauster D; Di Lella S Biol Chem; 2022 Apr; 403(5-6):615-624. PubMed ID: 35357791 [TBL] [Abstract][Full Text] [Related]
17. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
18. Probing structural basis for enhanced binding of SARS-CoV-2 P.1 variant spike protein with the human ACE2 receptor. Lata S; Akif M J Cell Biochem; 2022 Jul; 123(7):1207-1221. PubMed ID: 35620980 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Cao W; Dong C; Kim S; Hou D; Tai W; Du L; Im W; Zhang XF Biophys J; 2021 Mar; 120(6):1011-1019. PubMed ID: 33607086 [TBL] [Abstract][Full Text] [Related]
20. Repurposing of anticancer phytochemicals for identifying potential fusion inhibitor for SARS-CoV-2 using molecular docking and molecular dynamics (MD) simulations. Patel CN; Goswami D; Sivakumar PK; Pandya HA J Biomol Struct Dyn; 2022 Oct; 40(17):7744-7761. PubMed ID: 33749528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]