These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33427250)

  • 1. Recent progress in the development of thermal interface materials: a review.
    Zhang Y; Ma J; Wei N; Yang J; Pei QX
    Phys Chem Chem Phys; 2021 Jan; 23(2):753-776. PubMed ID: 33427250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced thermal properties of epoxy composites by constructing thermal conduction networks with low content of three-dimensional graphene.
    Li C; Huang M; Zhang Z; Qin Y; Liang L; Tian ZQ; Ali A; Shen PK
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Thermal Interface Materials for Thermal Management of High-Power Electronics.
    Xing W; Xu Y; Song C; Deng T
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications.
    Dai W; Wang Y; Li M; Chen L; Yan Q; Yu J; Jiang N; Lin CT
    Adv Mater; 2024 Jun; ():e2311335. PubMed ID: 38847403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials.
    Chen J; Huang X; Sun B; Wang Y; Zhu Y; Jiang P
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30909-30917. PubMed ID: 28825465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transport of carbon nanomaterials.
    Chen XK; Chen KQ
    J Phys Condens Matter; 2020 Apr; 32(15):153002. PubMed ID: 31796650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-Inorganic Thermoelectric Nanomaterials: Electrical Properties, Interfacial Chemistry Engineering, and Devices.
    Zhang X; Pan S; Song H; Guo W; Zhao S; Chen G; Zhang Q; Jin H; Zhang L; Chen Y; Wang S
    Front Chem; 2021; 9():677821. PubMed ID: 33981678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.
    Yegin C; Nagabandi N; Feng X; King C; Catalano M; Oh JK; Talib AJ; Scholar EA; Verkhoturov SV; Cagin T; Sokolov AV; Kim MJ; Matin K; Narumanchi S; Akbulut M
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10120-10127. PubMed ID: 28240857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosslinking effect of borax additive on the thermal properties of polymer-based 1D and 2D nanocomposites used as thermal interface materials.
    Chen G; Yadav AA; Jung IW; Lee J; Choi K; Kang SW
    Sci Rep; 2022 Sep; 12(1):16029. PubMed ID: 36163395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.
    Joshi RK; Schneider JJ
    Chem Soc Rev; 2012 Aug; 41(15):5285-312. PubMed ID: 22722888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance liquid metal thermal interface materials.
    Chen S; Deng Z; Liu J
    Nanotechnology; 2021 Feb; 32(9):092001. PubMed ID: 33207322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Based Thermal Interface Materials: An Application-Oriented Perspective on Architecture Design.
    Lv L; Dai W; Li A; Lin CT
    Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductivity of Polymers and Their Nanocomposites.
    Xu X; Chen J; Zhou J; Li B
    Adv Mater; 2018 Apr; 30(17):e1705544. PubMed ID: 29573283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparative Study of Thermal Aging Effect on the Properties of Silicone-Based and Silicone-Free Thermal Gap Filler Materials.
    Chowdhury ASMR; Rabby MM; Kabir M; Das PP; Bhandari R; Raihan R; Agonafer D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RGO and Three-Dimensional Graphene Networks Co-modified TIMs with High Performances.
    Bo T; Zhengwei W; Huang W; Sen L; Tingting M; Haogang Y; Xufei L
    Nanoscale Res Lett; 2017 Sep; 12(1):527. PubMed ID: 28875303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications.
    Dang ZM; Zheng MS; Zha JW
    Small; 2016 Apr; 12(13):1688-701. PubMed ID: 26865507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application-Driven High-Thermal-Conductivity Polymer Nanocomposites.
    Lin Y; Li P; Liu W; Chen J; Liu X; Jiang P; Huang X
    ACS Nano; 2024 Feb; 18(5):3851-3870. PubMed ID: 38266182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicone Nanocomposites with Enhanced Thermal Resistance: A Short Review.
    Zielecka M; Rabajczyk A
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications.
    Wu Y; Xue Y; Qin S; Liu D; Wang X; Hu X; Li J; Wang X; Bando Y; Golberg D; Chen Y; Gogotsi Y; Lei W
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43163-43170. PubMed ID: 29160066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat Transport Control and Thermal Characterization of Low-Dimensional Materials: A Review.
    El Sachat A; Alzina F; Sotomayor Torres CM; Chavez-Angel E
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33450930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.