These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33427268)

  • 1. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect.
    Chen WQ; Sedighi M; Jivkov AP
    Nanoscale; 2021 Jan; 13(3):1696-1716. PubMed ID: 33427268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-Osmosis in Charged Nanochannels: Effects of Surface Charge and Ionic Strength.
    Chen WQ; Jivkov AP; Sedighi M
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34159-34171. PubMed ID: 37428544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis.
    Farago O
    Eur Phys J E Soft Matter; 2019 Oct; 42(10):136. PubMed ID: 31650276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics.
    Fu L; Merabia S; Joly L
    Phys Rev Lett; 2017 Nov; 119(21):214501. PubMed ID: 29219396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis.
    Wang X; Liu M; Jing D; Mohamad A; Prezhdo O
    Nano Lett; 2020 Dec; 20(12):8965-8971. PubMed ID: 33231457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating Shear Flows without Moving Parts by Thermo-osmosis in Heterogeneous Nanochannels.
    Wang X; Liu M; Jing D; Prezhdo O
    J Phys Chem Lett; 2021 Oct; 12(41):10099-10105. PubMed ID: 34633822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface hydrophilicity-mediated migration of nano/microparticles under temperature gradient in a confined space.
    Xu H; Zheng X; Shi X
    J Colloid Interface Sci; 2023 May; 637():489-499. PubMed ID: 36724663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermo-osmosis of a near-critical binary fluid mixture: A general formulation and universal flow direction.
    Yabunaka S; Fujitani Y
    Phys Rev E; 2024 Jun; 109(6-1):064610. PubMed ID: 39021031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and versatile thermo-osmotic flows with a pinch of salt.
    Herrero C; De San Féliciano M; Merabia S; Joly L
    Nanoscale; 2022 Jan; 14(3):626-631. PubMed ID: 34989386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soret separation and thermo-osmosis in porous media.
    Hafskjold B; Bedeaux D; Kjelstrup S; Wilhelmsen Ø
    Eur Phys J E Soft Matter; 2022 May; 45(5):41. PubMed ID: 35503580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of osmosis in a single-file pore.
    Liu X; Shu L; Jin S
    Phys Rev E; 2018 Aug; 98(2-1):022406. PubMed ID: 30253501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing theory and simulation for thermo-osmosis.
    Proesmans K; Frenkel D
    J Chem Phys; 2019 Sep; 151(12):124109. PubMed ID: 31575196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size effects of pore density and solute size on water osmosis through nanoporous membrane.
    Zhao K; Wu H
    J Phys Chem B; 2012 Nov; 116(45):13459-66. PubMed ID: 23116121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of osmosis.
    Kiil F
    Am J Physiol; 1989 Apr; 256(4 Pt 2):R801-8. PubMed ID: 2705569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.
    Gillespie D; Pennathur S
    Anal Chem; 2013 Mar; 85(5):2991-8. PubMed ID: 23368674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmosis in a minimal model system.
    Lion TW; Allen RJ
    J Chem Phys; 2012 Dec; 137(24):244911. PubMed ID: 23277960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations.
    Yoshida H; Marbach S; Bocquet L
    J Chem Phys; 2017 May; 146(19):194702. PubMed ID: 28527431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano Heat Pump Based on Reverse Thermo-osmosis Effect.
    Li J; Long R; Zhang B; Yang R; Liu W; Liu Z
    J Phys Chem Lett; 2020 Nov; 11(22):9856-9861. PubMed ID: 32991184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.