These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33427374)

  • 1. Electrochemical Splitting of Methane in Molten Salts To Produce Hydrogen.
    Fan Z; Xiao W
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7664-7668. PubMed ID: 33427374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review.
    Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ electrochemical conversion of CO
    Weng W; Jiang B; Wang Z; Xiao W
    Sci Adv; 2020 Feb; 6(9):eaay9278. PubMed ID: 32158949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure and Metal-confining Carbon Nanotubes through Electrochemical Reduction of Carbon Dioxide in Ca-based Molten Salts.
    Cao J; Jing S; Wang H; Xu W; Zhang M; Xiao J; Peng Y; Ning X; Wang Z; Xiao W
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306877. PubMed ID: 37278885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects.
    Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA
    Chem Asian J; 2023 Sep; ():e202300641. PubMed ID: 37740712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production and solar energy storage with thermo-electrochemically enhanced steam methane reforming.
    Guo K; Liu M; Wang B; Lou J; Hao Y; Pei G; Jin H
    Sci Bull (Beijing); 2024 Apr; 69(8):1109-1121. PubMed ID: 38413331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of hydrogen production from municipal solid wastes as competitive route to produce low-carbon H
    Borgogna A; Centi G; Iaquaniello G; Perathoner S; Papanikolaou G; Salladini A
    Sci Total Environ; 2022 Jun; 827():154393. PubMed ID: 35271922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Reduction of Carbon Dioxide and Iron Oxide in Molten Salts to Fe/Fe
    Liang X; Xiao J; Weng W; Xiao W
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):2120-2124. PubMed ID: 33064932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural gas anodes for aluminium electrolysis in molten fluorides.
    Haarberg GM; Khalaghi B; Mokkelbost T
    Faraday Discuss; 2016 Aug; 190():71-84. PubMed ID: 27210046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anode electrolysis of sulfides.
    Qu J; Chen X; Xie H; Gao S; Wang D; Yin H
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2202884119. PubMed ID: 35878036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contemporary avenues of the Hydrogen industry: Opportunities and challenges in the eco-friendly approach.
    Qureshi F; Yusuf M; Ibrahim H; Kamyab H; Chelliapan S; Pham CQ; Vo DN
    Environ Res; 2023 Jul; 229():115963. PubMed ID: 37105287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor.
    Michalsky R; Neuhaus D; Steinfeld A
    Energy Technol (Weinh); 2015 Jul; 3(7):784-789. PubMed ID: 31218206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon.
    Upham DC; Agarwal V; Khechfe A; Snodgrass ZR; Gordon MJ; Metiu H; McFarland EW
    Science; 2017 Nov; 358(6365):917-921. PubMed ID: 29146810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient electrochemical reforming of CH
    Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K
    Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.