These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33427374)

  • 21. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes.
    Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI
    Front Chem; 2018; 6():263. PubMed ID: 30018951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The electrochemical reduction processes of solid compounds in high temperature molten salts.
    Xiao W; Wang D
    Chem Soc Rev; 2014 May; 43(10):3215-28. PubMed ID: 24535552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening.
    Douglas A; Carter R; Li M; Pint CL
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19010-19018. PubMed ID: 29715008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overall Carbon-neutral Electrochemical Reduction of CO
    Jing S; Sheng R; Liang X; Gu D; Peng Y; Xiao J; Shen Y; Hu D; Xiao W
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202216315. PubMed ID: 36478510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities.
    Sun P; Young B; Elgowainy A; Lu Z; Wang M; Morelli B; Hawkins T
    Environ Sci Technol; 2019 Jun; 53(12):7103-7113. PubMed ID: 31039312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct conversion of carbon dioxide and steam into hydrocarbons and oxygenates using solid acid electrolysis cells.
    Fujiwara N; Tada S; Kikuchi R
    iScience; 2022 Nov; 25(11):105381. PubMed ID: 36439988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable Synthesis of Oxygen Vacancy-Rich Unsupported Iron Oxide for Efficient Thermocatalytic Conversion of Methane to Hydrogen and Carbon Nanomaterials.
    Alharthi AI; Qahtan TF; Shaddad MN; Alotaibi MA; Alotibi S; Alansi AM
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RETRACTED: Ammonia synthesis. Ammonia synthesis by N₂ and steam electrolysis in molten hydroxide suspensions of nanoscale Fe₂O₃.
    Licht S; Cui B; Wang B; Li FF; Lau J; Liu S
    Science; 2014 Aug; 345(6197):637-40. PubMed ID: 25104378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].
    Ji HB; Xu JH; Xie JF; Chen QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1246-50. PubMed ID: 18800697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review.
    Naikoo GA; Arshad F; Hassan IU; Tabook MA; Pedram MZ; Mustaqeem M; Tabassum H; Ahmed W; Rezakazemi M
    Front Chem; 2021; 9():736801. PubMed ID: 34765584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic Study on the Effect of Chromium Addition to Ni-Based Catalysts for the Steam-CO2 Reforming of Methane.
    Park YH; Li P; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1526-30. PubMed ID: 27433614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Low-temperature Hydrogen Production by Electrochemical-assisted Methanol Steam Reforming.
    Liu Q; Du S; Liu T; Gong L; Wu Y; Lin J; Yang P; Huang G; Li M; Wu Y; Zhou Y; Li Y; Tao L; Wang S
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315157. PubMed ID: 38143245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.
    Bicer Y; Dincer I; Vezina G; Raso F
    Environ Manage; 2017 May; 59(5):842-855. PubMed ID: 28197650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen.
    Park H; Vecitis CD; Hoffmann MR
    J Phys Chem A; 2008 Aug; 112(33):7616-26. PubMed ID: 18656909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molten salt electro-preparation of graphitic carbons.
    Zhu F; Ge J; Gao Y; Li S; Chen Y; Tu J; Wang M; Jiao S
    Exploration (Beijing); 2023 Feb; 3(1):20210186. PubMed ID: 37323618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2011 Jan; 45(2):796-802. PubMed ID: 21142093
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.