These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33427448)

  • 41. Facile and low-cost ceramic fiber-based carbon-carbon composite for solar evaporation.
    Yin M; Hsin Y; Guo X; Zhang R; Huang X; Zhang X
    Sci Total Environ; 2021 Mar; 759():143546. PubMed ID: 33257079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of morphological evolution and aggregation of plasmonic core-shell nanostructures on solar thermal conversion.
    Xing L; Wang R; Ha Y; Li Z
    Appl Opt; 2023 Jul; 62(19):5195-5201. PubMed ID: 37707223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superhydrophilic and Oleophobic Porous Architectures Based on Basalt Fibers as Oil-Repellent Photothermal Materials for Solar Steam Generation.
    Chen L; Xia M; Du J; Luo X; Zhang L; Li A
    ChemSusChem; 2020 Feb; 13(3):493-500. PubMed ID: 31794107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
    Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
    Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A
    ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduced Red Mud as the Solar Absorber for Solar-Driven Water Evaporation and Vapor-Electricity Generation.
    Wang P; Wang X; Chen S; Zhang J; Mu X; Chen Y; Sun Z; Wei A; Tian Y; Zhou J; Liang X; Miao L; Saito N
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30556-30564. PubMed ID: 34170099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photothermal response of plasmonic nanofillers for membrane distillation.
    Elmaghraoui D; Politano A; Jaziri S
    J Chem Phys; 2020 Mar; 152(11):114102. PubMed ID: 32199444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly Elastic, Robust, and Efficient Hydrogel Solar Absorber against Harsh Environmental Impacts.
    Ji X; Fan X; Liu X; Gu J; Lu H; Luan Z; Liang J
    Nano Lett; 2024 Mar; 24(11):3498-3506. PubMed ID: 38440992
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MXene-Coated Membranes for Autonomous Solar-Driven Desalination.
    Mustakeem M; El-Demellawi JK; Obaid M; Ming F; Alshareef HN; Ghaffour N
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5265-5274. PubMed ID: 35060695
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Development of Carbon-Nanotube-Based Solar Heat Absorption Devices and Their Application.
    Islam S; Furuta H
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Janus Poly(Vinylidene Fluoride) Membranes with Penetrative Pores for Photothermal Desalination.
    Yu HH; Yan LJ; Shen YC; Chen SY; Li HN; Yang J; Xu ZK
    Research (Wash D C); 2020; 2020():3241758. PubMed ID: 32206759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photothermal Membrane Water Treatment for Two Worlds.
    Jun YS; Wu X; Ghim D; Jiang Q; Cao S; Singamaneni S
    Acc Chem Res; 2019 May; 52(5):1215-1225. PubMed ID: 31062969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photothermal Conversion Material Derived from Used Cigarette Filters for Solar Steam Generation.
    Sun H; Li Y; Zhu Z; Mu P; Wang F; Liang W; Ma C; Li A
    ChemSusChem; 2019 Sep; 12(18):4257-4264. PubMed ID: 31336029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination.
    Qin DD; Zhu YJ; Yang RL; Xiong ZC
    Nanoscale; 2020 Mar; 12(12):6717-6728. PubMed ID: 32163069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.
    Guo A; Ming X; Fu Y; Wang G; Wang X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29958-29964. PubMed ID: 28816435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity
    Liu D; Lei C; Wu K; Fu Q
    ACS Nano; 2020 Nov; 14(11):15738-15747. PubMed ID: 33166456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly efficient solar photothermal conversion of graphene-coated conjugated microporous polymers hollow spheres.
    Ma Y; Hu Z; Lu N; Niu Y; Deng X; Li J; Zhu Z; Sun H; Liang W; Li A
    J Colloid Interface Sci; 2022 Oct; 623():856-869. PubMed ID: 35636294
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellulose paper support with dual-layered nano-microstructures for enhanced plasmonic photothermal heating and solar vapor generation.
    Huang Y; Morishita Y; Uetani K; Nogi M; Koga H
    Nanoscale Adv; 2020 Jun; 2(6):2339-2346. PubMed ID: 36133379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.
    Park T; Na J; Kim B; Kim Y; Shin H; Kim E
    ACS Nano; 2015 Dec; 9(12):11830-9. PubMed ID: 26308669
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enabling Highly Enhanced Solar Thermoelectric Generator Efficiency by a CuCrMnCoAlN-Based Spectrally Selective Absorber.
    Liu X; Zhao P; He CY; Wang WM; Liu BH; Lu ZW; Wang YF; Guo HX; Liu G; Gao XH
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36288261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.