These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 33427455)
1. Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Bu Y; Li H; Yu W; Pan Y; Li L; Wang Y; Pu L; Ding J; Gao G; Pan B Environ Sci Technol; 2021 Feb; 55(3):2110-2120. PubMed ID: 33427455 [TBL] [Abstract][Full Text] [Related]
2. Evolution of Singlet Oxygen by Activating Peroxydisulfate and Peroxymonosulfate: A Review. Xiao G; Xu T; Faheem M; Xi Y; Zhou T; Moryani HT; Bao J; Du J Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33804931 [TBL] [Abstract][Full Text] [Related]
3. Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants. Zhu S; Li X; Kang J; Duan X; Wang S Environ Sci Technol; 2019 Jan; 53(1):307-315. PubMed ID: 30479119 [TBL] [Abstract][Full Text] [Related]
4. Fe Xu Z; Ju S; Gao P; Lin J; Niu Y; Meng F; Li S; Li F; Du J; Xu L; Peng H; Pan B Environ Sci Pollut Res Int; 2023 May; 30(24):66303-66313. PubMed ID: 37097559 [TBL] [Abstract][Full Text] [Related]
5. Oxygen vacancy-mediated peroxydisulfate activation and singlet oxygen generation toward 2,4-dichlorophenol degradation on specific CuO Pan M; Tang-Hu SY; Li C; Hong J; Liu S; Pan B J Hazard Mater; 2023 Jan; 441():129944. PubMed ID: 36116314 [TBL] [Abstract][Full Text] [Related]
6. Tuning interfacial oxygen vacancy level of bismuth oxybromide to enhance photocatalytic degradation of bisphenol A. Liu LX; Liu C; Li B; Dong YM; Wang XH; Zhang X Chemosphere; 2024 May; 356():141911. PubMed ID: 38583539 [TBL] [Abstract][Full Text] [Related]
7. Visible Light-Induced Catalyst-Free Activation of Peroxydisulfate: Pollutant-Dependent Production of Reactive Species. Wen Y; Huang CH; Ashley DC; Meyerstein D; Dionysiou DD; Sharma VK; Ma X Environ Sci Technol; 2022 Feb; 56(4):2626-2636. PubMed ID: 35119268 [TBL] [Abstract][Full Text] [Related]
8. Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Duan X; Sun H; Wang S Acc Chem Res; 2018 Mar; 51(3):678-687. PubMed ID: 29494126 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of solar-driven photocatalytic activity of oxygen vacancy-rich Bi/BiOBr/Sr Li Y; Zhang Y; Wang J; Fan Y; Xiao T; Yin Z; Wang T; Qiu J; Song Z J Environ Sci (China); 2022 May; 115():76-87. PubMed ID: 34969479 [TBL] [Abstract][Full Text] [Related]
10. Electron-transfer-dominated non-radical activation of peroxydisulfate for efficient removal of chlorophenol contaminants by one-pot synthesized nitrogen and sulfur codoped mesoporous carbon. Yang J; He X; Dai J; Chen Y; Li Y; Hu X Environ Res; 2021 Mar; 194():110496. PubMed ID: 33220245 [TBL] [Abstract][Full Text] [Related]
11. Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. Yin H; Yao F; Pi Z; Zhong Y; He L; Hou K; Fu J; Chen S; Tao Z; Wang D; Li X; Yang Q J Colloid Interface Sci; 2021 Mar; 586():551-562. PubMed ID: 33246653 [TBL] [Abstract][Full Text] [Related]
12. Revealing the heterogeneous activation mechanism of peroxydisulfate by CuO: the critical role of surface-binding organic substrates. Zhou T; Han Y; Xiang W; Wang C; Wu X; Mao J; Huang M Sci Total Environ; 2022 Jan; 802():149833. PubMed ID: 34455270 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of oxygen vacancy-enriched N/P co-doped CoFe Hu M; Zhu J; Zhou W Environ Pollut; 2021 Feb; 270():116092. PubMed ID: 33333407 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Degradation of Antibiotic by Peroxydisulfate Catalysis with CuO@CNT: Simultaneous Liu J; Ding C; Gong S; Fu K; Deng H; Shi J Molecules; 2022 Oct; 27(20):. PubMed ID: 36296657 [TBL] [Abstract][Full Text] [Related]
15. Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: key role of superoxide radicals. Zhu J; Zhu Y; Zhou W J Colloid Interface Sci; 2022 Mar; 610():504-517. PubMed ID: 34838311 [TBL] [Abstract][Full Text] [Related]
16. Waste self-heating bag derived iron-based composite with abundant oxygen vacancies for highly efficient Fenton-like degradation of micropollutants. Chen C; Ji R; Li W; Lan Y; Guo J Chemosphere; 2023 Jun; 326():138499. PubMed ID: 36963587 [TBL] [Abstract][Full Text] [Related]
17. The adsorption affinity of N-doped biochar plays a crucial role in peroxydisulfate activation and bisphenol A oxidative degradation. Zhong J; Ma Y; Jiang S; Dai G; Liu Z; Shu Y Environ Sci Pollut Res Int; 2022 Dec; 29(59):88630-88643. PubMed ID: 35834086 [TBL] [Abstract][Full Text] [Related]
18. Insight into mechanism of peroxydisulfate activation by natural pyrite: Participation of Fe(IV) and regulation of Fe(III)/Fe(II) cycle by sulfur species. Liu Z; An Y; Li X Chemosphere; 2023 Feb; 314():137657. PubMed ID: 36581120 [TBL] [Abstract][Full Text] [Related]
19. Oxygen vacancies-dominated reactive species generation from peroxymonosulfate activated by MoO Wang X; Liu X; Tong Y; Liu C; Ding Y; Gao J; Fang G; Zha X; Wang Y; Zhou D J Hazard Mater; 2023 Sep; 458():131798. PubMed ID: 37336112 [TBL] [Abstract][Full Text] [Related]
20. Stable and recyclable FeS-CMC-based peroxydisulfate activation for effective bisphenol A reduction: performance and mechanism. Tan Z; Tan J; Yang Z; Sun W; Guo A; Wang J; Li Y; Lin X Chemosphere; 2023 Sep; 335():139129. PubMed ID: 37279822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]