These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33427469)

  • 1. Joint Reaction Coordinate for Computing the Free-Energy Landscape of Pore Nucleation and Pore Expansion in Lipid Membranes.
    Hub JS
    J Chem Theory Comput; 2021 Feb; 17(2):1229-1239. PubMed ID: 33427469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing a Continuous Polar Defect: A Reaction Coordinate for Pore Formation in Lipid Membranes.
    Hub JS; Awasthi N
    J Chem Theory Comput; 2017 May; 13(5):2352-2366. PubMed ID: 28376619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects.
    Awasthi N; Hub JS
    J Chem Theory Comput; 2016 Jul; 12(7):3261-9. PubMed ID: 27254744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Simulations Reveal the Free Energy Landscape and Transition State of Membrane Electroporation.
    Kasparyan G; Hub JS
    Phys Rev Lett; 2024 Apr; 132(14):148401. PubMed ID: 38640376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy landscape of rim-pore expansion in membrane fusion.
    Risselada HJ; Smirnova Y; Grubmüller H
    Biophys J; 2014 Nov; 107(10):2287-95. PubMed ID: 25418297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic simulations of pore formation and closure in lipid bilayers.
    Bennett WF; Sapay N; Tieleman DP
    Biophys J; 2014 Jan; 106(1):210-9. PubMed ID: 24411253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How arginine derivatives alter the stability of lipid membranes: dissecting the roles of side chains, backbone and termini.
    Verbeek SF; Awasthi N; Teiwes NK; Mey I; Hub JS; Janshoff A
    Eur Biophys J; 2021 Mar; 50(2):127-142. PubMed ID: 33661339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore nucleation in mechanically stretched bilayer membranes.
    Wang ZJ; Frenkel D
    J Chem Phys; 2005 Oct; 123(15):154701. PubMed ID: 16252963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides.
    Miyazaki Y; Okazaki S; Shinoda W
    Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1409-1419. PubMed ID: 30885804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations.
    Kasparyan G; Poojari C; Róg T; Hub JS
    J Phys Chem B; 2020 Oct; 124(40):8811-8821. PubMed ID: 32924486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane pore formation in atomistic and coarse-grained simulations.
    Kirsch SA; Böckmann RA
    Biochim Biophys Acta; 2016 Oct; 1858(10):2266-2277. PubMed ID: 26748016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation.
    Lyu Y; Xiang N; Zhu X; Narsimhan G
    J Chem Phys; 2017 Apr; 146(15):155101. PubMed ID: 28433027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalence of Charge Imbalance and External Electric Fields during Free Energy Calculations of Membrane Electroporation.
    Kasparyan G; Hub JS
    J Chem Theory Comput; 2023 May; 19(9):2676-2683. PubMed ID: 37052575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastable Prepores in Tension-Free Lipid Bilayers.
    Ting CL; Awasthi N; Müller M; Hub JS
    Phys Rev Lett; 2018 Mar; 120(12):128103. PubMed ID: 29694074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free Energy Surface and Molecular Mechanism of Slow Structural Transitions in Lipid Bilayers.
    Punia R; Goel G
    J Chem Theory Comput; 2023 Nov; 19(22):8245-8257. PubMed ID: 37947833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore formation in lipid membrane II: Energy landscape under external stress.
    Akimov SA; Volynsky PE; Galimzyanov TR; Kuzmin PI; Pavlov KV; Batishchev OV
    Sci Rep; 2017 Oct; 7(1):12509. PubMed ID: 28970526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.