These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33427555)

  • 1. Investigating the potential of deep learning for patient-specific quality assurance of salivary gland contours using EORTC-1219-DAHANCA-29 clinical trial data.
    Nijhuis H; van Rooij W; Gregoire V; Overgaard J; Slotman BJ; Verbakel WF; Dahele M
    Acta Oncol; 2021 May; 60(5):575-581. PubMed ID: 33427555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric Evaluation.
    van Rooij W; Dahele M; Ribeiro Brandao H; Delaney AR; Slotman BJ; Verbakel WF
    Int J Radiat Oncol Biol Phys; 2019 Jul; 104(3):677-684. PubMed ID: 30836167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contour subregion error detection methodology using deep learning auto-segmentation.
    Duan J; Bernard ME; Rong Y; Castle JR; Feng X; Johnson JD; Chen Q
    Med Phys; 2023 Nov; 50(11):6673-6683. PubMed ID: 37793103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of EORTC-1219-DAHANCA-29 trial plans demonstrates the potential of knowledge-based planning to provide patient-specific treatment plan quality assurance.
    Tol JP; Dahele M; Gregoire V; Overgaard J; Slotman BJ; Verbakel WFAR
    Radiother Oncol; 2019 Jan; 130():75-81. PubMed ID: 30348462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.
    Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P
    J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality Assurance based on Deep Learning for Pelvic OARs Delineation in Radiotherapy.
    Yu H; He Y; Fu Y; Li X; Zhang J; Liu H
    Curr Med Imaging; 2023; 19(4):373-381. PubMed ID: 35726811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to improve deep learning-based salivary gland segmentation.
    van Rooij W; Dahele M; Nijhuis H; Slotman BJ; Verbakel WF
    Radiat Oncol; 2020 Dec; 15(1):272. PubMed ID: 33261620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The predictive value of segmentation metrics on dosimetry in organs at risk of the brain.
    Poel R; Rüfenacht E; Hermann E; Scheib S; Manser P; Aebersold DM; Reyes M
    Med Image Anal; 2021 Oct; 73():102161. PubMed ID: 34293536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning based automatic contour refinement for inaccurate auto-segmentation in MR-guided adaptive radiotherapy.
    Ding J; Zhang Y; Amjad A; Sarosiek C; Dang NP; Zarenia M; Li XA
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36731136
    [No Abstract]   [Full Text] [Related]  

  • 11. Automated Quality Assurance of OAR Contouring for Lung Cancer Based on Segmentation With Deep Active Learning.
    Men K; Geng H; Biswas T; Liao Z; Xiao Y
    Front Oncol; 2020; 10():986. PubMed ID: 32719742
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-modal vision-language pipeline strategy for contour quality assurance and adaptive optimization.
    Luan S; Ou-Yang J; Yang X; Wei W; Xue X; Zhu B
    Phys Med Biol; 2024 Mar; 69(6):. PubMed ID: 38373347
    [No Abstract]   [Full Text] [Related]  

  • 14. Quality assurance of radiotherapy in the ongoing EORTC 1219-DAHANCA-29 trial for HPV/p16 negative squamous cell carcinoma of the head and neck: Results of the benchmark case procedure.
    Christiaens M; Collette S; Overgaard J; Gregoire V; Kazmierska J; Castadot P; Giralt J; Grant W; Tomsej M; Bar-Deroma R; Monti AF; Hurkmans CW; Weber DC
    Radiother Oncol; 2017 Jun; 123(3):424-430. PubMed ID: 28478912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy.
    Byun HK; Chang JS; Choi MS; Chun J; Jung J; Jeong C; Kim JS; Chang Y; Chung SY; Lee S; Kim YB
    Radiat Oncol; 2021 Oct; 16(1):203. PubMed ID: 34649569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Categorizing segmentation quality using a quantitative quality assurance algorithm.
    Rodrigues G; Louie A; Videtic G; Best L; Patil N; Hallock A; Gaede S; Kempe J; Battista J; de Haan P; Bauman G
    J Med Imaging Radiat Oncol; 2012 Dec; 56(6):668-78. PubMed ID: 23210588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospective deployment of an automated implementation solution for artificial intelligence translation to clinical radiation oncology.
    Kehayias CE; Yan Y; Bontempi D; Quirk S; Bitterman DS; Bredfeldt JS; Aerts HJWL; Mak RH; Guthier CV
    Front Oncol; 2023; 13():1305511. PubMed ID: 38239639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.