These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33427573)
1. Plastic changes in primate motor cortex following paired peripheral nerve stimulation. Habekost B; Germann M; Baker SN J Neurophysiol; 2021 Feb; 125(2):458-475. PubMed ID: 33427573 [TBL] [Abstract][Full Text] [Related]
2. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. Charlton CS; Ridding MC; Thompson PD; Miles TS J Neurol Sci; 2003 Apr; 208(1-2):79-85. PubMed ID: 12639729 [TBL] [Abstract][Full Text] [Related]
3. Combined effect of motor imagery and peripheral nerve electrical stimulation on the motor cortex. Saito K; Yamaguchi T; Yoshida N; Tanabe S; Kondo K; Sugawara K Exp Brain Res; 2013 Jun; 227(3):333-42. PubMed ID: 23591692 [TBL] [Abstract][Full Text] [Related]
4. Plasticity of motor behavior in monkeys with crossed forelimb nerves. Brinkman C; Porter R; Norman J Science; 1983 Apr; 220(4595):438-40. PubMed ID: 6836289 [TBL] [Abstract][Full Text] [Related]
5. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. Ziemann U; Ilić TV; Pauli C; Meintzschel F; Ruge D J Neurosci; 2004 Feb; 24(7):1666-72. PubMed ID: 14973238 [TBL] [Abstract][Full Text] [Related]
6. Motor training and the combination of action observation and peripheral nerve stimulation reciprocally interfere with the plastic changes induced in primary motor cortex excitability. Bisio A; Avanzino L; Biggio M; Ruggeri P; Bove M Neuroscience; 2017 Apr; 348():33-40. PubMed ID: 28214579 [TBL] [Abstract][Full Text] [Related]
7. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Ridding MC; Brouwer B; Miles TS; Pitcher JB; Thompson PD Exp Brain Res; 2000 Mar; 131(1):135-43. PubMed ID: 10759179 [TBL] [Abstract][Full Text] [Related]
8. Decrease in short-latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement. Miyaguchi S; Kojima S; Sasaki R; Kotan S; Kirimoto H; Tamaki H; Onishi H Brain Behav; 2017 Jul; 7(7):e00744. PubMed ID: 28729946 [TBL] [Abstract][Full Text] [Related]
9. Modulation of motor cortex excitability by median nerve and digit stimulation. Chen R; Corwell B; Hallett M Exp Brain Res; 1999 Nov; 129(1):77-86. PubMed ID: 10550505 [TBL] [Abstract][Full Text] [Related]
10. Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans. Quartarone A; Rizzo V; Bagnato S; Morgante F; Sant'Angelo A; Girlanda P; Siebner HR J Physiol; 2006 Sep; 575(Pt 2):657-70. PubMed ID: 16825301 [TBL] [Abstract][Full Text] [Related]
11. Time course of induction of increased human motor cortex excitability by nerve stimulation. McKay D; Brooker R; Giacomin P; Ridding M; Miles T Neuroreport; 2002 Jul; 13(10):1271-3. PubMed ID: 12151785 [TBL] [Abstract][Full Text] [Related]
12. LTD-like plasticity induced by paired associative stimulation: direct evidence in humans. Di Lazzaro V; Dileone M; Profice P; Pilato F; Oliviero A; Mazzone P; Di Iorio R; Capone F; Ranieri F; Florio L; Tonali PA Exp Brain Res; 2009 Apr; 194(4):661-4. PubMed ID: 19319509 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Stefan K; Kunesch E; Benecke R; Cohen LG; Classen J J Physiol; 2002 Sep; 543(Pt 2):699-708. PubMed ID: 12205201 [TBL] [Abstract][Full Text] [Related]
14. Selectivity of attenuation (i.e., gating) of somatosensory potentials during voluntary movement in humans. Tapia MC; Cohen LG; Starr A Electroencephalogr Clin Neurophysiol; 1987 May; 68(3):226-30. PubMed ID: 2436883 [TBL] [Abstract][Full Text] [Related]
15. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. Wolters A; Sandbrink F; Schlottmann A; Kunesch E; Stefan K; Cohen LG; Benecke R; Classen J J Neurophysiol; 2003 May; 89(5):2339-45. PubMed ID: 12612033 [TBL] [Abstract][Full Text] [Related]
16. The excitability of human cortical inhibitory circuits responsible for the muscle silent period after transcranial brain stimulation. Bertasi V; Bertolasi L; Frasson E; Priori A Exp Brain Res; 2000 Jun; 132(3):384-9. PubMed ID: 10883387 [TBL] [Abstract][Full Text] [Related]
17. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. Lei Y; Perez MA J Physiol; 2017 Sep; 595(18):6203-6217. PubMed ID: 28513860 [TBL] [Abstract][Full Text] [Related]
18. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723 [TBL] [Abstract][Full Text] [Related]
19. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. D'Amico JM; Dongés SC; Taylor JL J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098 [TBL] [Abstract][Full Text] [Related]
20. Induction of cortical plasticity for reciprocal muscles by paired associative stimulation. Suzuki M; Kirimoto H; Sugawara K; Watanabe M; Shimizu S; Ishizaka I; Yamada S; Matsunaga A; Fukuda M; Onishi H Brain Behav; 2014; 4(6):822-32. PubMed ID: 25365805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]