These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33427852)

  • 1. Deformations and Ruptures in Human Lenses With Cortical Cataract Subjected to Ex Vivo Simulated Accommodation.
    Michael R; D'Antin JC; Pinilla Cortés L; Burd HJ; Sheil B; Barraquer RI
    Invest Ophthalmol Vis Sci; 2021 Jan; 62(1):12. PubMed ID: 33427852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal deformation of the human crystalline lens during accommodation.
    Weeber HA; van der Heijde RG
    Acta Ophthalmol; 2008 Sep; 86(6):642-7. PubMed ID: 18752516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of age-related cuneiform cortical cataracts: the case for mechanical stress.
    Michael R; Barraquer RI; Willekens B; van Marle J; Vrensen GF
    Vision Res; 2008 Feb; 48(4):626-34. PubMed ID: 18221767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and subcapsular cataracts: significance of physical forces.
    Pau H
    Ophthalmologica; 2006; 220(1):1-5. PubMed ID: 16374041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.
    Martinez-Enriquez E; Sun M; Velasco-Ocana M; Birkenfeld J; Pérez-Merino P; Marcos S
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT600-10. PubMed ID: 27627188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature affects the biomechanical response of in vitro non-human primate lenses during lens stretching.
    Maceo Heilman B; Durkee H; Rowaan CJ; Arrieta E; Kelly SP; Ehrmann K; Manns F; Parel JM
    Exp Eye Res; 2022 Mar; 216():108951. PubMed ID: 35051430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling internal stress distributions in the human lens: can opponent theories coexist?
    Belaidi A; Pierscionek BK
    J Vis; 2007 Aug; 7(11):1.1-12. PubMed ID: 17997656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the internal structure of the human crystalline lens with age and accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA; Vrensen GF
    Vision Res; 2003 Oct; 43(22):2363-75. PubMed ID: 12962993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.
    Vrensen GFJM; Otto C; Lenferink A; Liszka B; Montenegro GA; Barraquer RI; Michael R
    Exp Eye Res; 2016 Apr; 145():100-109. PubMed ID: 26611157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical investigation of changes in lens shape during accommodation.
    Cabeza-Gil I; Grasa J; Calvo B
    Sci Rep; 2021 May; 11(1):9639. PubMed ID: 33953252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early cortical lens opacities: a short overview.
    Vrensen GF
    Acta Ophthalmol; 2009 Sep; 87(6):602-10. PubMed ID: 19719805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodating intraocular lenses: a critical review of present and future concepts.
    Menapace R; Findl O; Kriechbaum K; Leydolt-Koeppl Ch
    Graefes Arch Clin Exp Ophthalmol; 2007 Apr; 245(4):473-89. PubMed ID: 16944188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.
    Marussich L; Manns F; Nankivil D; Maceo Heilman B; Yao Y; Arrieta-Quintero E; Ho A; Augusteyn R; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4239-48. PubMed ID: 26161985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Src family kinases in cortical cataract formation.
    Zhou J; Menko AS
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2293-300. PubMed ID: 12091430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and cell volume changes in the rat lens during the formation of radiation cataracts.
    Zintz C; Beebe DC
    Exp Eye Res; 1986 Jan; 42(1):43-54. PubMed ID: 3956604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior lens capsule strains during simulated accommodation in porcine eyes.
    Pellegrino A; Burd HJ; Pinilla Cortés L; D'Antin JC; Petrinic N; Barraquer RI; Michael R
    Exp Eye Res; 2018 Mar; 168():19-27. PubMed ID: 29288023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating the Mechanics of Lens Accommodation via a Manual Lens Stretcher.
    Webb JN; Dong C; Bernal A; Scarcelli G
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biometry of the lens with respect to age and cataract morphology. Evaluation of Scheimpflug photos of the anterior segment].
    Shibata T; Hockwin O; Weigelin E; Kleifeld O; Dragomirescu V
    Klin Monbl Augenheilkd; 1984 Jul; 185(1):35-42. PubMed ID: 6482284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.