BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33427852)

  • 1. Deformations and Ruptures in Human Lenses With Cortical Cataract Subjected to Ex Vivo Simulated Accommodation.
    Michael R; D'Antin JC; Pinilla Cortés L; Burd HJ; Sheil B; Barraquer RI
    Invest Ophthalmol Vis Sci; 2021 Jan; 62(1):12. PubMed ID: 33427852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal deformation of the human crystalline lens during accommodation.
    Weeber HA; van der Heijde RG
    Acta Ophthalmol; 2008 Sep; 86(6):642-7. PubMed ID: 18752516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of age-related cuneiform cortical cataracts: the case for mechanical stress.
    Michael R; Barraquer RI; Willekens B; van Marle J; Vrensen GF
    Vision Res; 2008 Feb; 48(4):626-34. PubMed ID: 18221767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and subcapsular cataracts: significance of physical forces.
    Pau H
    Ophthalmologica; 2006; 220(1):1-5. PubMed ID: 16374041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.
    Martinez-Enriquez E; Sun M; Velasco-Ocana M; Birkenfeld J; Pérez-Merino P; Marcos S
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT600-10. PubMed ID: 27627188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature affects the biomechanical response of in vitro non-human primate lenses during lens stretching.
    Maceo Heilman B; Durkee H; Rowaan CJ; Arrieta E; Kelly SP; Ehrmann K; Manns F; Parel JM
    Exp Eye Res; 2022 Mar; 216():108951. PubMed ID: 35051430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling internal stress distributions in the human lens: can opponent theories coexist?
    Belaidi A; Pierscionek BK
    J Vis; 2007 Aug; 7(11):1.1-12. PubMed ID: 17997656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the internal structure of the human crystalline lens with age and accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA; Vrensen GF
    Vision Res; 2003 Oct; 43(22):2363-75. PubMed ID: 12962993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.
    Vrensen GFJM; Otto C; Lenferink A; Liszka B; Montenegro GA; Barraquer RI; Michael R
    Exp Eye Res; 2016 Apr; 145():100-109. PubMed ID: 26611157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical investigation of changes in lens shape during accommodation.
    Cabeza-Gil I; Grasa J; Calvo B
    Sci Rep; 2021 May; 11(1):9639. PubMed ID: 33953252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early cortical lens opacities: a short overview.
    Vrensen GF
    Acta Ophthalmol; 2009 Sep; 87(6):602-10. PubMed ID: 19719805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodating intraocular lenses: a critical review of present and future concepts.
    Menapace R; Findl O; Kriechbaum K; Leydolt-Koeppl Ch
    Graefes Arch Clin Exp Ophthalmol; 2007 Apr; 245(4):473-89. PubMed ID: 16944188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.
    Marussich L; Manns F; Nankivil D; Maceo Heilman B; Yao Y; Arrieta-Quintero E; Ho A; Augusteyn R; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4239-48. PubMed ID: 26161985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Src family kinases in cortical cataract formation.
    Zhou J; Menko AS
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2293-300. PubMed ID: 12091430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and cell volume changes in the rat lens during the formation of radiation cataracts.
    Zintz C; Beebe DC
    Exp Eye Res; 1986 Jan; 42(1):43-54. PubMed ID: 3956604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior lens capsule strains during simulated accommodation in porcine eyes.
    Pellegrino A; Burd HJ; Pinilla Cortés L; D'Antin JC; Petrinic N; Barraquer RI; Michael R
    Exp Eye Res; 2018 Mar; 168():19-27. PubMed ID: 29288023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating the Mechanics of Lens Accommodation via a Manual Lens Stretcher.
    Webb JN; Dong C; Bernal A; Scarcelli G
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biometry of the lens with respect to age and cataract morphology. Evaluation of Scheimpflug photos of the anterior segment].
    Shibata T; Hockwin O; Weigelin E; Kleifeld O; Dragomirescu V
    Klin Monbl Augenheilkd; 1984 Jul; 185(1):35-42. PubMed ID: 6482284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.