BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33428006)

  • 1. Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size.
    Kosaka R; Sakota D; Nishida M; Maruyama O; Yamane T
    J Artif Organs; 2021 Jun; 24(2):157-163. PubMed ID: 33428006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.
    Kosaka R; Yoshida F; Nishida M; Maruyama O; Kawaguchi Y; Yamane T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3295-8. PubMed ID: 26736996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.
    Kosaka R; Nishida M; Maruyama O; Yambe T; Imachi K; Yamane T
    Biomed Mater Eng; 2013; 23(1-2):37-47. PubMed ID: 23442235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid dynamic design for low hemolysis in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Nishida M; Maruyama O; Yamane T; Kuwana K; Kawaguchi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2732-5. PubMed ID: 24110292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T
    Artif Organs; 2013 Sep; 37(9):778-85. PubMed ID: 23834855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yasui K; Nishida M; Kawaguchi Y; Maruyama O; Yamane T
    Artif Organs; 2014 Sep; 38(9):818-22. PubMed ID: 25234763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a Spiral Groove Geometry for Improvement of Hemolysis Level in a Hydrodynamically Levitated Centrifugal Blood Pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Artif Organs; 2015 Aug; 39(8):710-4. PubMed ID: 26146791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of hemocompatibility for hydrodynamic levitation centrifugal pump by optimizing step bearings.
    Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1331-4. PubMed ID: 22254562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.
    Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T
    Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():270-3. PubMed ID: 26736252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of hemolysis in a centrifugal blood pump with hydrodynamic bearings and semi-open impeller.
    Kosaka R; Yamane T; Maruyama O; Nishida M; Yada T; Saito S; Hirai S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3982-5. PubMed ID: 18002872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of the leakage flow of the hydrodynamically levitated centrifugal blood pump for extracorporeal mechanical circulatory support systems.
    Tsukiya T; Nishinaka T
    J Artif Organs; 2023 Sep; 26(3):176-183. PubMed ID: 35907152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal design of the hydrodynamic multi-arc bearing in a centrifugal blood pump for the improvement of bearing stiffness and hemolysis level.
    Yasui K; Kosaka R; Nishida M; Maruyama O; Kawaguchi Y; Yamane T
    Artif Organs; 2013 Sep; 37(9):768-77. PubMed ID: 23980526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow rate estimation of a centrifugal blood pump using the passively stabilized eccentric position of a magnetically levitated impeller.
    Shida S; Masuzawa T; Osa M
    Int J Artif Organs; 2019 Jun; 42(6):291-298. PubMed ID: 30854913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical antithrombogenic properties by vibrational excitation of the impeller in a magnetically levitated centrifugal blood pump.
    Murashige T; Hijikata W
    Artif Organs; 2019 Sep; 43(9):849-859. PubMed ID: 31321785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump.
    Yamane T; Maruyama O; Nishida M; Kosaka R; Sugiyama D; Miyamoto Y; Kawamura H; Kato T; Sano T; Okubo T; Sankai Y; Shigeta O; Tsutsui T
    J Artif Organs; 2007; 10(2):71-6. PubMed ID: 17574508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of gravity on flow rate estimations of a centrifugal blood pump using the eccentric position of a levitated impeller.
    Shida S; Masuzawa T; Osa M
    Int J Artif Organs; 2020 Dec; 43(12):774-781. PubMed ID: 32393095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump.
    Kataoka H; Kimura Y; Fujita H; Takatani S
    Artif Organs; 2006 Nov; 30(11):841-54. PubMed ID: 17062107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemolytic performance of a MagLev disposable rotary blood pump (MedTech Dispo): effects of MagLev gap clearance and surface roughness.
    Hoshi H; Asama J; Hijikata W; Hara C; Shinshi T; Yasuda T; Ohuchi K; Shimokohbe A; Takatani S
    Artif Organs; 2006 Dec; 30(12):949-54. PubMed ID: 17181835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma skimming efficiency of human blood in the spiral groove bearing of a centrifugal blood pump.
    Sakota D; Kondo K; Kosaka R; Nishida M; Maruyama O
    J Artif Organs; 2021 Jun; 24(2):126-134. PubMed ID: 33113050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.