These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33428091)

  • 1. Electrokinetic detection and separation of living algae in a microfluidic chip: implication for ship's ballast water analysis.
    Song Y; Li Z; Feng A; Zhang J; Liu Z; Li D
    Environ Sci Pollut Res Int; 2021 May; 28(18):22853-22863. PubMed ID: 33428091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic motion and viability assessment of algae with a polyethylene glycol-dextran interface.
    Xu R; Zhang J; Cao Z; Song Y; Xin X
    Electrophoresis; 2023 Dec; 44(23):1818-1825. PubMed ID: 37438992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Studies for killing the oceanic harmful organisms in ship's ballast water using hydroxyl radicals].
    Bai MD; Zhang NH; Zhang ZT; Chen C; Meng XY
    Huan Jing Ke Xue; 2012 Feb; 33(2):454-8. PubMed ID: 22509581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water.
    Maw MM; Wang J; Li F; Jiang J; Song Y; Pan X
    Int J Mol Sci; 2015 Oct; 16(10):25560-75. PubMed ID: 26516836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Changeable Lab-on-a-Chip Detector for Marine Nonindigenous Microorganisms in Ship's Ballast Water.
    Maw MM; Pan X; Peng Z; Wang Y; Zhao L; Dai B; Wang J
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
    Wang Y; Wang J; Wu X; Jiang Z; Wang W
    Electrophoresis; 2019 Mar; 40(6):969-978. PubMed ID: 30221789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the ecotoxicity and biological efficacy of ship's ballast water treatment based on hydroxyl radicals technique.
    Zhang N; Zhang Z; Bai M; Chen C; Meng X; Tian Y
    Mar Pollut Bull; 2012 Dec; 64(12):2742-8. PubMed ID: 23103029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regrowth in ship's ballast water tanks: Think again!
    Grob C; Pollet BG
    Mar Pollut Bull; 2016 Aug; 109(1):46-48. PubMed ID: 27184126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying indicatively living phytoplankton cells in ballast water samples--recommendations for Port State Control.
    Gollasch S; David M; Francé J; Mozetič P
    Mar Pollut Bull; 2015 Dec; 101(2):768-75. PubMed ID: 26454632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of microbial populations in a ship's ballast water and sediments on a voyage from Japan to Qatar.
    Mimura H; Katakura R; Ishida H
    Mar Pollut Bull; 2005 Jul; 50(7):751-7. PubMed ID: 15993142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of invasive marine species in the process of conveying ballast water using OH based on a strong ionization discharge.
    Bai M; Zheng Q; Tian Y; Zhang Z; Chen C; Cheng C; Meng X
    Water Res; 2016 Jun; 96():217-24. PubMed ID: 27058879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different approaches and limitations for testing phytoplankton viability in natural assemblies and treated ballast water.
    Castro MCT; Veldhuis MJW; Fileman TW; Hall-Spencer JM
    Mar Pollut Bull; 2018 Dec; 137():172-179. PubMed ID: 30503423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples.
    Joachimsthal EL; Ivanov V; Tay JH; Tay ST
    Mar Pollut Bull; 2003 Mar; 46(3):308-13. PubMed ID: 12604064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of interdisciplinary ballast water treatment systems and operational experiences from ships.
    Bakalar G
    Springerplus; 2016; 5():240. PubMed ID: 27026934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential application of SMART II for Vibrio cholerae O1 and O139 detection in ship's ballast water.
    Chen A; Tamburri MN; Colwell RR; Huq A
    Mar Pollut Bull; 2018 Nov; 136():79-83. PubMed ID: 30509844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burn Care on Cruise Ships-Epidemiology, international regulations, risk situation, disaster management and qualification of the ship's doctor.
    Ottomann C; Hartmann B; Antonic V
    Burns; 2016 Sep; 42(6):1304-10. PubMed ID: 27344547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sodium hypochlorite treatment on the chlorophyll fluorescence in photosystem II of microalgae.
    Li N; Liu Z; Wang P; Suman K; Zhang J; Song Y
    Sci Total Environ; 2022 Aug; 833():155192. PubMed ID: 35421461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in global ballast water management.
    Endresen Ø; Lee Behrens H; Brynestad S; Bjørn Andersen A; Skjong R
    Mar Pollut Bull; 2004 Apr; 48(7-8):615-23. PubMed ID: 15041419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the introduction risk of non-indigenous species through ship ballast water in the Port of Douala (Cameroon).
    Nkouefuth Nfongmo Y; Onana FM; Masseret E; Nana PA; Ewoukem TE; Kacimi A
    Mar Pollut Bull; 2024 Jan; 198():115794. PubMed ID: 38039573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Living algae detection with a PDMS-liquid chlorophyll fluorescence microfluidic chip filter and a smartphone.
    Liu J; Chang H; Zhang X; Chen S; Song Y; Li D
    Analyst; 2022 Aug; 147(16):3723-3731. PubMed ID: 35829696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.