These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 33428385)
1. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets. Xu D; Wang S; Berglund LA; Zhou Q ACS Appl Mater Interfaces; 2021 Jan; 13(3):4463-4472. PubMed ID: 33428385 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites. Yao K; Huang S; Tang H; Xu Y; Buntkowsky G; Berglund LA; Zhou Q ACS Appl Mater Interfaces; 2017 Jun; 9(23):20169-20178. PubMed ID: 28530799 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films To Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials. Ghanadpour M; Carosio F; Ruda MC; Wågberg L ACS Appl Mater Interfaces; 2018 Sep; 10(38):32543-32555. PubMed ID: 30148604 [TBL] [Abstract][Full Text] [Related]
4. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Xing L; Hu C; Zhang W; Guan L; Gu J Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405 [TBL] [Abstract][Full Text] [Related]
6. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix. Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351 [TBL] [Abstract][Full Text] [Related]
7. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites. Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560 [TBL] [Abstract][Full Text] [Related]
8. Cellulose-clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution. Yang Q; Wu CN; Saito T; Isogai A Carbohydr Polym; 2014 Jan; 100():179-84. PubMed ID: 24188852 [TBL] [Abstract][Full Text] [Related]
9. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880 [TBL] [Abstract][Full Text] [Related]
10. Preparation and Characterization of Nanocomposite Films Containing Nano-Aluminum Nitride and Cellulose Nanofibrils. Nie S; Zhang Y; Wang L; Wu Q; Wang S Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382633 [TBL] [Abstract][Full Text] [Related]
11. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932 [TBL] [Abstract][Full Text] [Related]
12. Comparative Structure-Property Relationship between Nanoclay and Cellulose Nanofiber Reinforced Natural Rubber Nanocomposites. Wongvasana B; Thongnuanchan B; Masa A; Saito H; Sakai T; Lopattananon N Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145891 [TBL] [Abstract][Full Text] [Related]
13. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Yu Z; Alsammarraie FK; Nayigiziki FX; Wang W; Vardhanabhuti B; Mustapha A; Lin M Food Res Int; 2017 Sep; 99(Pt 1):166-172. PubMed ID: 28784473 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268 [TBL] [Abstract][Full Text] [Related]
15. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
16. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171 [TBL] [Abstract][Full Text] [Related]
17. Residual Strain and Nanostructural Effects during Drying of Nanocellulose/Clay Nanosheet Hybrids: Synchrotron X-ray Scattering Results. Li L; Chen P; Medina L; Yang L; Nishiyama Y; Berglund LA ACS Nano; 2023 Aug; 17(16):15810-15820. PubMed ID: 37531258 [TBL] [Abstract][Full Text] [Related]
18. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane. Kim GH; Kang DH; Jung BN; Shim JK Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215748 [TBL] [Abstract][Full Text] [Related]
20. Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane. Aoki D; Lossada F; Hoenders D; Ajiro H; Walther A Biomacromolecules; 2022 Apr; 23(4):1693-1702. PubMed ID: 35362317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]