BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33428503)

  • 1. Potential Novel Ovarian Cancer Treatment Targeting Myeloid-Derived Suppressor Cells.
    Abiko K; Hayashi T; Yamaguchi K; Mandai M; Konishi I
    Cancer Invest; 2021 Apr; 39(4):310-314. PubMed ID: 33428503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer.
    Komura N; Mabuchi S; Shimura K; Yokoi E; Kozasa K; Kuroda H; Takahashi R; Sasano T; Kawano M; Matsumoto Y; Kodama M; Hashimoto K; Sawada K; Kimura T
    Cancer Immunol Immunother; 2020 Dec; 69(12):2477-2499. PubMed ID: 32561967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-VEGF therapy resistance in ovarian cancer is caused by GM-CSF-induced myeloid-derived suppressor cell recruitment.
    Horikawa N; Abiko K; Matsumura N; Baba T; Hamanishi J; Yamaguchi K; Murakami R; Taki M; Ukita M; Hosoe Y; Koshiyama M; Konishi I; Mandai M
    Br J Cancer; 2020 Mar; 122(6):778-788. PubMed ID: 31932754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment.
    Carnevalli LS; Ghadially H; Barry ST
    Front Immunol; 2021; 12():633685. PubMed ID: 33953710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
    De Cicco P; Ercolano G; Ianaro A
    Front Immunol; 2020; 11():1680. PubMed ID: 32849585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atezolizumab and Bevacizumab Attenuate Cisplatin Resistant Ovarian Cancer Cells Progression Synergistically via Suppressing Epithelial-Mesenchymal Transition.
    Zhang L; Chen Y; Li F; Bao L; Liu W
    Front Immunol; 2019; 10():867. PubMed ID: 31105696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SBRT combined with PD-1/PD-L1 inhibitors in NSCLC treatment: a focus on the mechanisms, advances, and future challenges.
    Chen Y; Gao M; Huang Z; Yu J; Meng X
    J Hematol Oncol; 2020 Jul; 13(1):105. PubMed ID: 32723363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloid-derived suppressor cells are essential partners for immune checkpoint inhibitors in the treatment of cisplatin-resistant bladder cancer.
    Takeyama Y; Kato M; Tamada S; Azuma Y; Shimizu Y; Iguchi T; Yamasaki T; Gi M; Wanibuchi H; Nakatani T
    Cancer Lett; 2020 Jun; 479():89-99. PubMed ID: 32200039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed death-1 pathway blockade produces a synergistic antitumor effect: combined application in ovarian cancer.
    Zhu X; Lang J
    J Gynecol Oncol; 2017 Sep; 28(5):e64. PubMed ID: 28657225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting DNA Repair Response Promotes Immunotherapy in Ovarian Cancer: Rationale and Clinical Application.
    Xie H; Wang W; Qi W; Jin W; Xia B
    Front Immunol; 2021; 12():661115. PubMed ID: 34712221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy.
    Sun L; Clavijo PE; Robbins Y; Patel P; Friedman J; Greene S; Das R; Silvin C; Van Waes C; Horn LA; Schlom J; Palena C; Maeda D; Zebala J; Allen CT
    JCI Insight; 2019 Apr; 4(7):. PubMed ID: 30944253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological Pathways Involved in Tumor Angiogenesis and Bevacizumab Based Anti-Angiogenic Therapy with Special References to Ovarian Cancer.
    Loizzi V; Del Vecchio V; Gargano G; De Liso M; Kardashi A; Naglieri E; Resta L; Cicinelli E; Cormio G
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28906427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloid Derived Suppressor Cells: Key Drivers of Immunosuppression in Ovarian Cancer.
    Baert T; Vankerckhoven A; Riva M; Van Hoylandt A; Thirion G; Holger G; Mathivet T; Vergote I; Coosemans A
    Front Immunol; 2019; 10():1273. PubMed ID: 31214202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase II trial of albumin-bound paclitaxel and granulocyte macrophage colony-stimulating factor as an immune modulator in recurrent platinum resistant ovarian cancer.
    Liao JB; Swensen RE; Ovenell KJ; Hitchcock-Bernhardt KM; Reichow JL; Apodaca MC; D'Amico L; Childs JS; Higgins DM; Buening BJ; Goff BA; Disis ML
    Gynecol Oncol; 2017 Mar; 144(3):480-485. PubMed ID: 28089377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade.
    Grauers Wiktorin H; Nilsson MS; Kiffin R; Sander FE; Lenox B; Rydström A; Hellstrand K; Martner A
    Cancer Immunol Immunother; 2019 Feb; 68(2):163-174. PubMed ID: 30315349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of MDSCs-targeting in lung cancer chemo-immunotherapeutics.
    Adah D; Hussain M; Qin L; Qin L; Zhang J; Chen X
    Pharmacol Res; 2016 Aug; 110():25-34. PubMed ID: 27157248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.
    Hou A; Hou K; Huang Q; Lei Y; Chen W
    Front Immunol; 2020; 11():783. PubMed ID: 32508809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab.
    Tobin RP; Jordan KR; Robinson WA; Davis D; Borges VF; Gonzalez R; Lewis KD; McCarter MD
    Int Immunopharmacol; 2018 Oct; 63():282-291. PubMed ID: 30121453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Yan D; Zhang M; Wang L; Adeshakin FO; Liu W; Wan X
    Biochem Biophys Res Commun; 2020 Feb; 522(3):604-611. PubMed ID: 31785814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.