BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33428539)

  • 1. Agreement of maximal lactate steady state with critical power and physiological thresholds in rowing.
    Possamai LT; Borszcz FK; de Aguiar RA; de Lucas RD; Turnes T
    Eur J Sport Sci; 2022 Mar; 22(3):371-380. PubMed ID: 33428539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of NIRS exercise intensity thresholds with maximal lactate steady state, critical power and rowing performance.
    Possamai LT; Borszcz FK; de Aguiar RA; de Lucas RD; Turnes T
    Biol Sport; 2024 Mar; 41(2):123-130. PubMed ID: 38524827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing.
    Beneke R
    Med Sci Sports Exerc; 1995 Jun; 27(6):863-7. PubMed ID: 7658947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of maximal lactate steady state response in selected sports events.
    Beneke R; von Duvillard SP
    Med Sci Sports Exerc; 1996 Feb; 28(2):241-6. PubMed ID: 8775160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists.
    Van Schuylenbergh R; Vanden Eynde B; Hespel P
    Int J Sports Med; 2004 Aug; 25(6):403-8. PubMed ID: 15346226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1197-1203. PubMed ID: 27819154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical power during an incremental test can be estimated from 2000-m rowing ergometer performance.
    Turnes T; Possamai LT; Penteado Dos Santos R; de Aguiar RA; Ribeiro G; Caputo F
    J Sports Med Phys Fitness; 2020 Feb; 60(2):214-219. PubMed ID: 31663313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the maximal lactate steady state on the motor pattern of exercise.
    Beneke R; Leithäuser RM; Hütler M
    Br J Sports Med; 2001 Jun; 35(3):192-6. PubMed ID: 11375880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance.
    Keir DA; Fontana FY; Robertson TC; Murias JM; Paterson DH; Kowalchuk JM; Pogliaghi S
    Med Sci Sports Exerc; 2015 Sep; 47(9):1932-40. PubMed ID: 25606817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time to exhaustion at intermittent maximal lactate steady state is longer than continuous cycling exercise.
    Grossl T; de Lucas RD; de Souza KM; Guglielmo LG
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1047-53. PubMed ID: 22891876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximal lactate steady state determination with a single incremental test exercise.
    Laplaud D; Guinot M; Favre-Juvin A; Flore P
    Eur J Appl Physiol; 2006 Mar; 96(4):446-52. PubMed ID: 16341873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis.
    Galán-Rioja MÁ; González-Mohíno F; Poole DC; González-Ravé JM
    Sports Med; 2020 Oct; 50(10):1771-1783. PubMed ID: 32613479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Varying the Step Duration on the Determination of Lactate Thresholds in Elite Rowers.
    Bourdon PC; Woolford SM; Buckley JD
    Int J Sports Physiol Perform; 2018 Jul; 13(6):687-693. PubMed ID: 29035635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal lactate steady state, respiratory compensation threshold and critical power.
    Dekerle J; Baron B; Dupont L; Vanvelcenaher J; Pelayo P
    Eur J Appl Physiol; 2003 May; 89(3-4):281-8. PubMed ID: 12736836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle Oxidative Capacity
    Possamai LT; de Aguiar RA; Borszcz FK; do Nascimento Salvador PC; de Lucas RD; Turnes T
    Res Q Exerc Sport; 2023 Dec; 94(4):1020-1027. PubMed ID: 36048498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood lactate concentration at the maximal lactate steady state is not dependent on endurance capacity in healthy recreationally trained individuals.
    Smekal G; von Duvillard SP; Pokan R; Hofmann P; Braun WA; Arciero PJ; Tschan H; Wonisch M; Baron R; Bachl N
    Eur J Appl Physiol; 2012 Aug; 112(8):3079-86. PubMed ID: 22194004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximal lactate-steady-state independent of performance.
    Beneke R; Hütler M; Leithäuser RM
    Med Sci Sports Exerc; 2000 Jun; 32(6):1135-9. PubMed ID: 10862542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals.
    Figueira TR; Caputo F; Pelarigo JG; Denadai BS
    J Sci Med Sport; 2008 Jun; 11(3):280-6. PubMed ID: 17553745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association Between Deoxygenated Hemoglobin Breaking Point, Anaerobic Threshold, and Rowing Performance.
    Turnes T; Penteado Dos Santos R; de Aguiar RA; Loch T; Possamai LT; Caputo F
    Int J Sports Physiol Perform; 2019 Sep; 14(8):1103-1109. PubMed ID: 30702376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake.
    Riechman SE; Zoeller RF; Balasekaran G; Goss FL; Robertson RJ
    J Sports Sci; 2002 Sep; 20(9):681-7. PubMed ID: 12200919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.