BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33428816)

  • 1. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*.
    Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor-Based Artificial Metalloenzymes on Living Human Cells.
    Ghattas W; Dubosclard V; Wick A; Bendelac A; Guillot R; Ricoux R; Mahy JP
    J Am Chem Soc; 2018 Jul; 140(28):8756-8762. PubMed ID: 29909636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold.
    Bos J; Browne WR; Driessen AJ; Roelfes G
    J Am Chem Soc; 2015 Aug; 137(31):9796-9. PubMed ID: 26214343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Friedel-Crafts reactions in water catalyzed by a human telomeric G-quadruplex DNA metalloenzyme.
    Wang C; Li Y; Jia G; Liu Y; Lu S; Li C
    Chem Commun (Camb); 2012 Jun; 48(50):6232-4. PubMed ID: 22595813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels-Alder Reaction.
    Ghattas W; Cotchico-Alonso L; Maréchal JD; Urvoas A; Rousseau M; Mahy JP; Ricoux R
    Chembiochem; 2016 Mar; 17(5):433-40. PubMed ID: 26677011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes for enantioselective catalysis.
    Bos J; Roelfes G
    Curr Opin Chem Biol; 2014 Apr; 19():135-43. PubMed ID: 24608083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes.
    Bersellini M; Roelfes G
    Org Biomol Chem; 2017 Apr; 15(14):3069-3073. PubMed ID: 28321451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hydroxyquinoline-Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes.
    Drienovská I; Scheele RA; Gutiérrez de Souza C; Roelfes G
    Chembiochem; 2020 Nov; 21(21):3077-3081. PubMed ID: 32585070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-based asymmetric catalysis: sequence-dependent rate acceleration and enantioselectivity.
    Boersma AJ; Klijn JE; Feringa BL; Roelfes G
    J Am Chem Soc; 2008 Sep; 130(35):11783-90. PubMed ID: 18681429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold.
    Coquière D; Bos J; Beld J; Roelfes G
    Angew Chem Int Ed Engl; 2009; 48(28):5159-62. PubMed ID: 19557756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and Evolution of Artificial Metalloenzymes within
    Liu Z; Huang J; Gu Y; Clark DS; Mukhopadhyay A; Keasling JD; Hartwig JF
    J Am Chem Soc; 2022 Jan; 144(2):883-890. PubMed ID: 34985270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel-Crafts Reactions in Water.
    Wang C; Hao M; Qi Q; Dang J; Dong X; Lv S; Xiong L; Gao H; Jia G; Chen Y; Hartig JS; Li C
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3444-3449. PubMed ID: 31825550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cofactor Binding Dynamics Influence the Catalytic Activity and Selectivity of an Artificial Metalloenzyme.
    Villarino L; Chordia S; Alonso-Cotchico L; Reddem E; Zhou Z; Thunnissen AMWH; Maréchal JD; Roelfes G
    ACS Catal; 2020 Oct; 10(20):11783-11790. PubMed ID: 33101759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Metalloenzymes based on TetR Proteins and Cu(II) for Enantioselective Friedel-Crafts Alkylation Reactions.
    Gutiérrez de Souza C; Bersellini M; Roelfes G
    ChemCatChem; 2020 Jun; 12(12):3190-3194. PubMed ID: 32612714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic enantioselective Friedel-Crafts alkylations of indoles with alpha'-phosphoric enones.
    Yang H; Hong YT; Kim S
    Org Lett; 2007 Jun; 9(12):2281-4. PubMed ID: 17497795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.