BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33428928)

  • 21. Metabolic flux of extracellular heme uptake in Pseudomonas aeruginosa is driven by the iron-regulated heme oxygenase (HemO).
    Barker KD; Barkovits K; Wilks A
    J Biol Chem; 2012 May; 287(22):18342-50. PubMed ID: 22493498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis.
    Wilderman PJ; Sowa NA; FitzGerald DJ; FitzGerald PC; Gottesman S; Ochsner UA; Vasil ML
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9792-7. PubMed ID: 15210934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of two heme-binding sites in the cytoplasmic heme-trafficking protein PhuS from Pseudomonas aeruginosa and their relevance to function.
    Block DR; Lukat-Rodgers GS; Rodgers KR; Wilks A; Bhakta MN; Lansky IB
    Biochemistry; 2007 Dec; 46(50):14391-402. PubMed ID: 18020455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung.
    Nguyen AT; O'Neill MJ; Watts AM; Robson CL; Lamont IL; Wilks A; Oglesby-Sherrouse AG
    J Bacteriol; 2014 Jun; 196(12):2265-76. PubMed ID: 24727222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural analysis and identification of PhuS as a heme-degrading enzyme from Pseudomonas aeruginosa.
    Lee MJ; Schep D; McLaughlin B; Kaufmann M; Jia Z
    J Mol Biol; 2014 May; 426(9):1936-46. PubMed ID: 24560694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The small RNA PrrH of Pseudomonas aeruginosa regulates hemolysis and oxidative resistance in bloodstream infection.
    Zeng S; Shi Q; Liu Y; Li M; Lin D; Zhang S; Li Q; Pu J; Shen C; Huang B; Chen C; Zeng J
    Microb Pathog; 2023 Jul; 180():106124. PubMed ID: 37105322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repurposing Acitretin as an Antipseudomonal Agent Targeting the
    Robinson EA; Wilks A; Xue F
    Biochemistry; 2021 Mar; 60(9):689-698. PubMed ID: 33621054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heme uptake and utilization by hypervirulent Acinetobacter baumannii LAC-4 is dependent on a canonical heme oxygenase (abHemO).
    Giardina BJ; Shahzad S; Huang W; Wilks A
    Arch Biochem Biophys; 2019 Sep; 672():108066. PubMed ID: 31398314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function Coupling Mechanism of PhuS and HemO in Heme Degradation.
    Lee MJY; Wang Y; Jiang Y; Li X; Ma J; Tan H; Turner-Wood K; Rahman MN; Chen G; Jia Z
    Sci Rep; 2017 Sep; 7(1):11273. PubMed ID: 28900278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a novel RhlI/R-PrrH-LasI/Phzc/PhzD signalling cascade and its implication in
    Lu Y; Li H; Pu J; Xiao Q; Zhao C; Cai Y; Liu Y; Wang L; Li Y; Huang B; Zeng J; Chen C
    Emerg Microbes Infect; 2019; 8(1):1658-1667. PubMed ID: 31718472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron starvation increases the production of the
    Chourashi R; Oglesby AG
    J Bacteriol; 2024 May; 206(5):e0027823. PubMed ID: 38624234
    [No Abstract]   [Full Text] [Related]  

  • 32. Heme inhibits the DNA binding properties of the cytoplasmic heme binding protein of Shigella dysenteriae (ShuS).
    Kaur AP; Wilks A
    Biochemistry; 2007 Mar; 46(11):2994-3000. PubMed ID: 17323920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events.
    Vasil ML
    Biometals; 2007 Jun; 20(3-4):587-601. PubMed ID: 17186376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contributions of the heme coordinating ligands of the
    Dent AT; Wilks A
    J Biol Chem; 2020 Jul; 295(30):10456-10467. PubMed ID: 32522817
    [No Abstract]   [Full Text] [Related]  

  • 35.
    Shahzad S; Krug SA; Mouriño S; Huang W; Kane MA; Wilks A
    mBio; 2024 Mar; 15(3):e0276323. PubMed ID: 38319089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa.
    Ochsner UA; Johnson Z; Vasil ML
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():185-198. PubMed ID: 10658665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation.
    Zygiel EM; Obisesan AO; Nelson CE; Oglesby AG; Nolan EM
    J Biol Chem; 2021; 296():100160. PubMed ID: 33273016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ShuS protein of Shigella dysenteriae is a heme-sequestering protein that also binds DNA.
    Wilks A
    Arch Biochem Biophys; 2001 Mar; 387(1):137-42. PubMed ID: 11368175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis.
    Mouriño S; Wilks A
    Adv Microb Physiol; 2021; 79():89-132. PubMed ID: 34836613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Asp99-Arg188 salt bridge of the Pseudomonas aeruginosa HemO is critical in allowing conformational flexibility during catalysis.
    Heinzl GA; Huang W; Robinson E; Xue F; Moëne-Loccoz P; Wilks A
    J Biol Inorg Chem; 2018 Oct; 23(7):1057-1070. PubMed ID: 30194537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.