These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33429140)

  • 21. Unsupervised Representation Learning for Proteochemometric Modeling.
    Kim PT; Winter R; Clevert DA
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating Polymer Representations via Quantifying Structure-Property Relationships.
    Ma R; Liu Z; Zhang Q; Liu Z; Luo T
    J Chem Inf Model; 2019 Jul; 59(7):3110-3119. PubMed ID: 31268306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Molecular Representations Using Neumann-Cayley Orthogonal Gated Recurrent Unit.
    Mucllari E; Zadorozhnyy V; Ye Q; Nguyen DD
    J Chem Inf Model; 2023 May; 63(9):2656-2666. PubMed ID: 37075324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement in ADMET Prediction with Multitask Deep Featurization.
    Feinberg EN; Joshi E; Pande VS; Cheng AC
    J Med Chem; 2020 Aug; 63(16):8835-8848. PubMed ID: 32286824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analyzing Learned Molecular Representations for Property Prediction.
    Yang K; Swanson K; Jin W; Coley C; Eiden P; Gao H; Guzman-Perez A; Hopper T; Kelley B; Mathea M; Palmer A; Settels V; Jaakkola T; Jensen K; Barzilay R
    J Chem Inf Model; 2019 Aug; 59(8):3370-3388. PubMed ID: 31361484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning Molecular Representations for Medicinal Chemistry.
    Chuang KV; Gunsalus LM; Keiser MJ
    J Med Chem; 2020 Aug; 63(16):8705-8722. PubMed ID: 32366098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different molecular enumeration influences in deep learning: an example using aqueous solubility.
    Chen JH; Tseng YJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32501508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational representations of protein-ligand interfaces for structure-based virtual screening.
    Qin T; Zhu Z; Wang XS; Xia J; Wu S
    Expert Opin Drug Discov; 2021 Oct; 16(10):1175-1192. PubMed ID: 34011222
    [No Abstract]   [Full Text] [Related]  

  • 29. Graph Convolutional Neural Networks as "General-Purpose" Property Predictors: The Universality and Limits of Applicability.
    Korolev V; Mitrofanov A; Korotcov A; Tkachenko V
    J Chem Inf Model; 2020 Jan; 60(1):22-28. PubMed ID: 31860296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advancing molecular graphs with descriptors for the prediction of chemical reaction yields.
    Yarish D; Garkot S; Grygorenko OO; Radchenko DS; Moroz YS; Gurbych O
    J Comput Chem; 2023 Jan; 44(2):76-92. PubMed ID: 36264601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Costless Performance Improvement in Machine Learning for Graph-Based Molecular Analysis.
    Na GS; Kim HW; Chang H
    J Chem Inf Model; 2020 Mar; 60(3):1137-1145. PubMed ID: 31928003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MoleculeNet: a benchmark for molecular machine learning.
    Wu Z; Ramsundar B; Feinberg EN; Gomes J; Geniesse C; Pappu AS; Leswing K; Pande V
    Chem Sci; 2018 Jan; 9(2):513-530. PubMed ID: 29629118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of the negative-positive ratio and screening database size on the performance of machine learning-based virtual screening.
    Kurczab R; Bojarski AJ
    PLoS One; 2017; 12(4):e0175410. PubMed ID: 28384344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction.
    Panapitiya G; Girard M; Hollas A; Sepulveda J; Murugesan V; Wang W; Saldanha E
    ACS Omega; 2022 May; 7(18):15695-15710. PubMed ID: 35571767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints.
    Yin Z; Song W; Li B; Wang F; Xie L; Xu X
    Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature.
    Tao L; Varshney V; Li Y
    J Chem Inf Model; 2021 Nov; 61(11):5395-5413. PubMed ID: 34662106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks.
    Casey AD; Son SF; Bilionis I; Barnes BC
    J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive Study on Molecular Supervised Learning with Graph Neural Networks.
    Hwang D; Yang S; Kwon Y; Lee KH; Lee G; Jo H; Yoon S; Ryu S
    J Chem Inf Model; 2020 Dec; 60(12):5936-5945. PubMed ID: 33164522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.