These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 33429203)

  • 21. Genetic engineering of bacteriophages: Key concepts, strategies, and applications.
    Hussain W; Yang X; Ullah M; Wang H; Aziz A; Xu F; Asif M; Ullah MW; Wang S
    Biotechnol Adv; 2023; 64():108116. PubMed ID: 36773707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future.
    Łobocka M; Dąbrowska K; Górski A
    BioDrugs; 2021 May; 35(3):255-280. PubMed ID: 33881767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens.
    Viertel TM; Ritter K; Horz HP
    J Antimicrob Chemother; 2014 Sep; 69(9):2326-36. PubMed ID: 24872344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus.
    Farooq U; Ullah MW; Yang Q; Aziz A; Xu J; Zhou L; Wang S
    Biosens Bioelectron; 2020 Jun; 157():112163. PubMed ID: 32250935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell Wall Glycans Mediate Recognition of the Dairy Bacterium Streptococcus thermophilus by Bacteriophages.
    Szymczak P; Filipe SR; Covas G; Vogensen FK; Neves AR; Janzen T
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30242010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Luminescent Phage-Based Detection of
    Zelcbuch L; Yitzhaki E; Nissan O; Gidron E; Buchshtab N; Kario E; Kredo-Russo S; Zak NB; Bassan M
    Pharmaceuticals (Basel); 2021 Apr; 14(4):. PubMed ID: 33918942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in bacteriophage based biosensors for food-borne pathogen detection.
    Singh A; Poshtiban S; Evoy S
    Sensors (Basel); 2013 Jan; 13(2):1763-86. PubMed ID: 23364199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Print to detect: a rapid and ultrasensitive phage-based dipstick assay for foodborne pathogens.
    Anany H; Brovko L; El Dougdoug NK; Sohar J; Fenn H; Alasiri N; Jabrane T; Mangin P; Monsur Ali M; Kannan B; Filipe CDM; Griffiths MW
    Anal Bioanal Chem; 2018 Feb; 410(4):1217-1230. PubMed ID: 28940009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection.
    Panhwar S; Keerio HA; Ilhan H; Boyacı IH; Tamer U
    Mol Biotechnol; 2024 Nov; 66(11):3059-3076. PubMed ID: 37914863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid hydrogel-based phage susceptibility test for pathogenic bacteria.
    Patpatia S; Schaedig E; Dirks A; Paasonen L; Skurnik M; Kiljunen S
    Front Cell Infect Microbiol; 2022; 12():1032052. PubMed ID: 36569196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteriophage-based pathogen detection.
    Ripp S
    Adv Biochem Eng Biotechnol; 2010; 118():65-83. PubMed ID: 19475368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.
    Alcaine SD; Law K; Ho S; Kinchla AJ; Sela DA; Nugen SR
    Biosens Bioelectron; 2016 Aug; 82():14-9. PubMed ID: 27031186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified Bacteriophage Tail Fiber Proteins for Labeling, Immobilization, Capture, and Detection of Bacteria.
    Dunne M; Loessner MJ
    Methods Mol Biol; 2019; 1918():67-86. PubMed ID: 30580400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutant and Recombinant Phages Selected from
    Peters TL; Song Y; Bryan DW; Hudson LK; Denes TG
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review.
    Ye J; Guo J; Li T; Tian J; Yu M; Wang X; Majeed U; Song W; Xiao J; Luo Y; Yue T
    Compr Rev Food Sci Food Saf; 2022 Mar; 21(2):1843-1867. PubMed ID: 35142431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Use of Bacteriophages in Biotechnology and Recent Insights into Proteomics.
    Abril AG; Carrera M; Notario V; Sánchez-Pérez Á; Villa TG
    Antibiotics (Basel); 2022 May; 11(5):. PubMed ID: 35625297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virus-based chemical and biological sensing.
    Mao C; Liu A; Cao B
    Angew Chem Int Ed Engl; 2009; 48(37):6790-810. PubMed ID: 19662666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding and Exploiting Phage-Host Interactions.
    Stone E; Campbell K; Grant I; McAuliffe O
    Viruses; 2019 Jun; 11(6):. PubMed ID: 31216787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.