BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33429250)

  • 1. Analysis of six preservatives in beverages using hydrophilic deep eutectic solvent as disperser in dispersive liquid-liquid microextraction based on the solidification of floating organic droplet.
    Bian Y; Wang Y; Yu J; Zheng S; Qin F; Zhao L
    J Pharm Biomed Anal; 2021 Feb; 195():113889. PubMed ID: 33429250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortex-assisted natural deep eutectic solvent dispersive liquid-liquid microextraction based on the solidification of a floating organic drop for the determination of benzoic acid and sorbic acid in condiments.
    Zhu X; Geng S; Wen T; Qin F; Zhao L
    Anal Methods; 2021 Oct; 13(40):4805-4813. PubMed ID: 34585197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Simultaneous determination of polycyclic aromatic hydrocarbons and phthalate esters in surface water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography].
    Yuan J; Wang J; Xu W; Xu F; Lu X
    Se Pu; 2020 Nov; 38(11):1308-1315. PubMed ID: 34213102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of phthalic acid esters from soft drinks and infusions by dispersive liquid-liquid microextraction based on the solidification of the floating organic drop using a menthol-based natural deep eutectic solvent.
    Ortega-Zamora C; Jiménez-Skrzypek G; González-Sálamo J; Hernández-Borges J
    J Chromatogr A; 2021 Jun; 1646():462132. PubMed ID: 33894455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry for the determination of nine bisphenols in bottled carbonated beverages.
    Mandrah K; Satyanarayana GNV; Roy SK
    J Chromatogr A; 2017 Dec; 1528():10-17. PubMed ID: 29096924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersive liquid-liquid microextraction based on solidification of floating organic droplets followed by high performance liquid chromatography for the determination of duloxetine in human plasma.
    Suh JH; Lee YY; Lee HJ; Kang M; Hur Y; Lee SN; Yang DH; Han SB
    J Pharm Biomed Anal; 2013 Mar; 75():214-9. PubMed ID: 23277153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An environment-friendly approach using deep eutectic solvent combined with liquid-liquid microextraction based on solidification of floating organic droplets for simultaneous determination of preservatives in beverages.
    Zhao J; Hou L; Zhao L; Liu L; Qi J; Wang L
    RSC Adv; 2023 Mar; 13(11):7185-7192. PubMed ID: 36875877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction and pre-concentration of parabens in liquid pharmaceutical samples by dispersive liquid-liquid microextraction based on deep eutectic solvents.
    Razavi N; Foroutan F; Sahebian S; Vahdati Khaki J
    Biomed Chromatogr; 2023 Feb; 37(2):e5547. PubMed ID: 36382931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of pyrethroids in cereals by HPLC with a deep eutectic solvent-based dispersive liquid-liquid microextraction with solidification of floating organic droplets.
    Wu B; Guo Z; Li X; Huang X; Teng C; Chen Z; Jing X; Zhao W
    Anal Methods; 2021 Feb; 13(5):636-641. PubMed ID: 33491682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of parabens using two microextraction methods coupled with capillary liquid chromatography-UV detection.
    Chen CW; Hsu WC; Lu YC; Weng JR; Feng CH
    Food Chem; 2018 Feb; 241():411-418. PubMed ID: 28958548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: Determination of chromium (VI) in beverages.
    Shishov A; Terno P; Moskvin L; Bulatov A
    Talanta; 2020 Jan; 206():120209. PubMed ID: 31514865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vortex-assisted dispersive liquid-phase microextraction for the analysis of main active compounds from Zi-Cao-Cheng-Qi decoction based on a hydrophobic deep eutectic solvent.
    Xue J; Yang L; Chen X; Bai XH; Hu S
    J Sep Sci; 2021 Dec; 44(24):4376-4383. PubMed ID: 34693642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of some red dyes in food samples using a hydrophobic deep eutectic solvent-based vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography.
    Faraji M
    J Chromatogr A; 2019 Apr; 1591():15-23. PubMed ID: 30651206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent for the analysis of ultraviolet filters in water samples by high performance liquid chromatography with the aid of response surface methodology.
    Zhang K; Li S; Wang Y; Fan J; Zhu G
    J Chromatogr A; 2020 May; 1618():460876. PubMed ID: 31980262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-assisted in situ deep eutectic solvent decomposition followed by the solidification of floating organic droplets-liquid-liquid microextraction method for extraction of azole antifungal drugs in biological samples prior to high-performance liquid chromatography.
    Ezoddin M; Abdi K; Behnamipour S; Javadi MHS
    J Sep Sci; 2022 May; 45(10):1757-1765. PubMed ID: 35266301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples.
    Sanagi MM; Abbas HH; Ibrahim WA; Aboul-Enien HY
    Food Chem; 2012 Jul; 133(2):557-62. PubMed ID: 25683433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A green air assisted-dispersive liquid-liquid microextraction based on solidification of a novel low viscous ternary deep eutectic solvent for the enrichment of endocrine disrupting compounds from water.
    El-Deen AK; Shimizu K
    J Chromatogr A; 2020 Oct; 1629():461498. PubMed ID: 32846342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using Central Composite Design.
    Asati A; Satyanarayana GNV; Patel DK
    J Chromatogr A; 2017 Sep; 1513():157-171. PubMed ID: 28735710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography.
    Ahmadi-Jouibari T; Fattahi N; Shamsipur M
    J Pharm Biomed Anal; 2014 Jun; 94():145-51. PubMed ID: 24583909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.