These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33429316)
1. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides. Zhao S; Xu W; Zhang W; Wu H; Guang C; Mu W Bioresour Technol; 2021 Mar; 323():124641. PubMed ID: 33429316 [TBL] [Abstract][Full Text] [Related]
2. Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency. Xie J; Zhao Y; Zhang H; Liu Z; Lu Z Lett Appl Microbiol; 2014 Jan; 58(1):53-9. PubMed ID: 24010722 [TBL] [Abstract][Full Text] [Related]
3. Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. Deng S; Chen Y; Wang D; Shi T; Wu X; Ma X; Li X; Hua R; Tang X; Li QX J Hazard Mater; 2015 Oct; 297():17-24. PubMed ID: 25938642 [TBL] [Abstract][Full Text] [Related]
4. Altering the substrate specificity of methyl parathion hydrolase with directed evolution. Ng TK; Gahan LR; Schenk G; Ollis DL Arch Biochem Biophys; 2015 May; 573():59-68. PubMed ID: 25797441 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning and characterization of a methyl parathion hydrolase from an organophosphorus-degrading bacterium, Serratia marcescens MEW06. Wang Y; Liu C; Wan J; Sun X; Ma W; Ni H FEMS Microbiol Lett; 2018 Dec; 365(24):. PubMed ID: 30476043 [TBL] [Abstract][Full Text] [Related]
6. An enzyme-free, ultrasensitive strategy for simultaneous screening of the p-nitrophenyl substituent organophosphorus pesticides. Sun P; Li B; Zhen J; Zhao J; Jia W; Pan L; Gong W; Liang G Food Chem; 2023 May; 408():135218. PubMed ID: 36563621 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Yang J; Yang C; Jiang H; Qiao C Biodegradation; 2008 Nov; 19(6):831-9. PubMed ID: 18373236 [TBL] [Abstract][Full Text] [Related]
8. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates. Tang X; Liang B; Yi T; Manco G; Palchetti I; Liu A Enzyme Microb Technol; 2014 Feb; 55():107-12. PubMed ID: 24411452 [TBL] [Abstract][Full Text] [Related]
9. Molecular binding of different classes of organophosphates to methyl parathion hydrolase from Ochrobactrum species. Bhat N; Nutho B; Hanpaibool C; Hadsadee S; Vangnai A; Rungrotmongkol T Proteins; 2024 Jan; 92(1):96-105. PubMed ID: 37646471 [TBL] [Abstract][Full Text] [Related]
10. Development of a novel optical biosensor for detection of organophosphorus pesticides based on methyl parathion hydrolase immobilized by metal-chelate affinity. Lan W; Chen G; Cui F; Tan F; Liu R; Yushupujiang M Sensors (Basel); 2012; 12(7):8477-90. PubMed ID: 23012501 [TBL] [Abstract][Full Text] [Related]
11. Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Soares PRS; Birolli WG; Ferreira IM; Porto ALM Mar Pollut Bull; 2021 May; 166():112185. PubMed ID: 33640600 [TBL] [Abstract][Full Text] [Related]
12. Recombinant organophosphorus hydrolase (OPH) expression in E. coli for the effective detection of organophosphate pesticides. Jain M; Yadav P; Joshi B; Joshi A; Kodgire P Protein Expr Purif; 2021 Oct; 186():105929. PubMed ID: 34139322 [TBL] [Abstract][Full Text] [Related]
13. Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode. Lei Y; Mulchandani P; Chen W; Mulchandani A J Agric Food Chem; 2005 Feb; 53(3):524-7. PubMed ID: 15686397 [TBL] [Abstract][Full Text] [Related]
14. Export of methyl parathion hydrolase to the periplasm by the twin-arginine translocation pathway in Escherichia coli. Yang C; Freudl R; Qiao C J Agric Food Chem; 2009 Oct; 57(19):8901-5. PubMed ID: 19754117 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of Burkholderia zhejiangensis CEIB S4-3 during the methyl parathion degradation process. Castrejón-Godínez ML; Tovar-Sánchez E; Ortiz-Hernández ML; Encarnación-Guevara S; Martínez-Batallar ÁG; Hernández-Ortiz M; Sánchez-Salinas E; Rodríguez A; Mussali-Galante P Pestic Biochem Physiol; 2022 Oct; 187():105197. PubMed ID: 36127069 [TBL] [Abstract][Full Text] [Related]
16. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. Islam SM; Math RK; Cho KM; Lim WJ; Hong SY; Kim JM; Yun MG; Cho JJ; Yun HD J Agric Food Chem; 2010 May; 58(9):5380-6. PubMed ID: 20405842 [TBL] [Abstract][Full Text] [Related]
17. Organophosphorus pesticide ozonation and formation of oxon intermediates. Wu J; Lan C; Chan GY Chemosphere; 2009 Aug; 76(9):1308-14. PubMed ID: 19539977 [TBL] [Abstract][Full Text] [Related]
18. Genetic surface-display of methyl parathion hydrolase on Yarrowia lipolytica for removal of methyl parathion in water. Wang XX; Chi Z; Ru SG; Chi ZM Biodegradation; 2012 Sep; 23(5):763-74. PubMed ID: 22534797 [TBL] [Abstract][Full Text] [Related]
19. An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Li R; Liu Y; Zhang J; Chen K; Li S; Jiang J Appl Microbiol Biotechnol; 2012 Jun; 94(6):1553-64. PubMed ID: 22120622 [TBL] [Abstract][Full Text] [Related]
20. Recombinant Organophosphorus acid anhydrolase (OPAA) enzyme-carbon quantum dot (CQDs)-immobilized thin film biosensors for the specific detection of Ethyl Paraoxon and Methyl Parathion in water resources. Vyas T; Jaiswal S; Choudhary S; Kodgire P; Joshi A Environ Res; 2024 Feb; 243():117855. PubMed ID: 38070850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]