These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33429513)

  • 1.
    Kageyama T; Osaki T; Enomoto J; Myasnikova D; Nittami T; Hozumi T; Ito T; Fukuda J
    ACS Biomater Sci Eng; 2016 Jun; 2(6):1059-1066. PubMed ID: 33429513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.
    Kageyama T; Kakegawa T; Osaki T; Enomoto J; Ito T; Nittami T; Fukuda J
    Biofabrication; 2014 Jun; 6(2):025006. PubMed ID: 24658207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment.
    Shimazu Y; Zhang B; Yue Z; Wallace GG; Fukuda J
    J Biosci Bioeng; 2019 Jan; 127(1):114-120. PubMed ID: 30072116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of perfusable vasculatures by using micromolding and electrochemical cell transfer.
    Osaki T; Kakegawa T; Mochizuki N; Fukuda J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6655-8. PubMed ID: 24111269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of vascular sprouting from fabricated perfusable vascular-like structures.
    Osaki T; Kakegawa T; Kageyama T; Enomoto J; Nittami T; Fukuda J
    PLoS One; 2015; 10(4):e0123735. PubMed ID: 25860890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of photocrosslinkable hydrogels for engineering three-dimensional vascular-like constructs by surface tension-driven assembly.
    Xiao W; Qu X; Tan Y; Xiao J; Le Y; Li Y; Liu X; Li B; Liao X
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111143. PubMed ID: 32806229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Tapered Fluidic Microchannels Conducive to Angiogenic Sprouting within Gelatin Methacryloyl Hydrogels.
    Qi Y; Zou T; Dissanayaka WL; Wong HM; Bertassoni LE; Zhang C
    J Endod; 2021 Jan; 47(1):52-61. PubMed ID: 33045266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
    Xie R; Zheng W; Guan L; Ai Y; Liang Q
    Small; 2020 Apr; 16(15):e1902838. PubMed ID: 31559675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase.
    Chen PY; Yang KC; Wu CC; Yu JH; Lin FH; Sun JS
    Acta Biomater; 2014 Feb; 10(2):912-20. PubMed ID: 24262131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization.
    Choi YH; Kim SH; Kim IS; Kim K; Kwon SK; Hwang NS
    Acta Biomater; 2019 Sep; 95():285-296. PubMed ID: 30710712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis and characterizations of in situ cross-linkable gelatin and 4-arm-PPO-PEO hybrid hydrogels via enzymatic reaction for tissue regenerative medicine.
    Park KM; Lee Y; Son JY; Oh DH; Lee JS; Park KD
    Biomacromolecules; 2012 Mar; 13(3):604-11. PubMed ID: 22263670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and biocompatibility of in situ enzymatically cross-linked gelatin hydrogels.
    Alarake NZ; Frohberg P; Groth T; Pietzsch M
    Int J Artif Organs; 2017 May; 40(4):159-168. PubMed ID: 28315501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Dual Hydrogel Model System for Vascularization.
    Kim S; Pan CC; Yang YP
    Macromol Biosci; 2020 Oct; 20(10):e2000204. PubMed ID: 32790230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Photopatterning of Perfusable Microchannels in Synthetic Hydrogels to Recreate Microphysiological Environments.
    Mora-Boza A; Mulero-Russe A; Caprio ND; Burdick JA; Singh A; García AJ
    Adv Mater; 2023 Dec; 35(52):e2306765. PubMed ID: 37775089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels for Engineering of Perfusable Vascular Networks.
    Liu J; Zheng H; Poh PS; Machens HG; Schilling AF
    Int J Mol Sci; 2015 Jul; 16(7):15997-6016. PubMed ID: 26184185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis.
    Anada T; Pan CC; Stahl AM; Mori S; Fukuda J; Suzuki O; Yang Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry.
    Contessi Negrini N; Angelova Volponi A; Sharpe PT; Celiz AD
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4330-4346. PubMed ID: 34086456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.