BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33429565)

  • 1. Piezoelectric Tensor of Collagen Fibrils Determined at the Nanoscale.
    Denning D; Kilpatrick JI; Fukada E; Zhang N; Habelitz S; Fertala A; Gilchrist MD; Zhang Y; Tofail SAM; Rodriguez BJ
    ACS Biomater Sci Eng; 2017 Jun; 3(6):929-935. PubMed ID: 33429565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing molecular polar order in tissues via electromechanical coupling.
    Denning D; Alilat S; Habelitz S; Fertala A; Rodriguez BJ
    J Struct Biol; 2012 Dec; 180(3):409-19. PubMed ID: 22985991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoelectric properties of aligned collagen membranes.
    Denning D; Paukshto MV; Habelitz S; Rodriguez BJ
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):284-92. PubMed ID: 24030958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.
    Kwon J; Cho H
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6680-6689. PubMed ID: 33320620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.
    Minary-Jolandan M; Yu MF
    ACS Nano; 2009 Jul; 3(7):1859-63. PubMed ID: 19505115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical Coupling in Collagen Measured under Increasing Relative Humidity.
    Bazaid A; Zhang F; Zhang Q; Neumayer S; Denning D; Habelitz S; Marina Ferreira A; Rodriguez BJ
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.
    Brennan CJ; Ghosh R; Koul K; Banerjee SK; Lu N; Yu ET
    Nano Lett; 2017 Sep; 17(9):5464-5471. PubMed ID: 28763615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional nanoscale structural and functional imaging in individual collagen type I fibrils.
    Harnagea C; Vallières M; Pfeffer CP; Wu D; Olsen BR; Pignolet A; Légaré F; Gruverman A
    Biophys J; 2010 Jun; 98(12):3070-7. PubMed ID: 20550920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy.
    Lees S; Prostak KS; Ingle VK; Kjoller K
    Calcif Tissue Int; 1994 Sep; 55(3):180-9. PubMed ID: 7987731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity.
    Minary-Jolandan M; Yu MF
    Nanotechnology; 2009 Feb; 20(8):085706. PubMed ID: 19417467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of out of plane orientation on polarization second harmonic generation of single collagen fibrils.
    Harvey M; Cisek R; Tokarz D; Kreplak L
    Biomed Opt Express; 2023 Dec; 14(12):6271-6282. PubMed ID: 38420315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-Correlated Piezoelectricity in Quasi-Two-Dimensional Zinc Oxide Nanosheets.
    Carlos C; Li J; Zhang Z; Berg KJ; Wang Y; Wang X
    Nano Lett; 2023 Jul; 23(13):6148-6155. PubMed ID: 37384822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect.
    Lozano H; Catalán G; Esteve J; Domingo N; Murillo G
    Nanotechnology; 2021 Jan; 32(2):025202. PubMed ID: 32942269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy.
    Jiang P; Huang B; Wei L; Yan F; Huang X; Li Y; Xie S; Pan K; Liu Y; Li J
    Nanotechnology; 2019 May; 30(20):205703. PubMed ID: 30699396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation.
    Calahorra Y; Kim W; Vukajlovic-Plestina J; Fontcuberta I Morral A; Kar-Narayan S
    Nanotechnology; 2020 Oct; 31(40):404003. PubMed ID: 32521513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2016 Jul; 60():356-366. PubMed ID: 26925699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromechanical properties of dried tendon and isoelectrically focused collagen hydrogels.
    Denning D; Abu-Rub MT; Zeugolis DI; Habelitz S; Pandit A; Fertala A; Rodriguez BJ
    Acta Biomater; 2012 Aug; 8(8):3073-9. PubMed ID: 22522132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.