These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33429664)

  • 1. Electromechanical Coupling of Murine Lung Tissues Probed by Piezoresponse Force Microscopy.
    Jiang P; Yan F; Nasr Esfahani E; Xie S; Zou D; Liu X; Zheng H; Li J
    ACS Biomater Sci Eng; 2017 Aug; 3(8):1827-1835. PubMed ID: 33429664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical Coupling in Collagen Measured under Increasing Relative Humidity.
    Bazaid A; Zhang F; Zhang Q; Neumayer S; Denning D; Habelitz S; Marina Ferreira A; Rodriguez BJ
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-induced ferroelectric switching in perovskite CH
    Wang P; Zhao J; Wei L; Zhu Q; Xie S; Liu J; Meng X; Li J
    Nanoscale; 2017 Mar; 9(11):3806-3817. PubMed ID: 28165096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.
    Kwon J; Cho H
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6680-6689. PubMed ID: 33320620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local Piezoelectric Properties of Doped Biomolecular Crystals.
    Kholkin A; Alikin D; Shur V; Dishon S; Ehre D; Lubomirsky I
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing Information: A Machine Learning Approach for Analysis of Complex Nanoscale Electromechanical Behavior in Defect-Rich PZT Films.
    Zhang F; Williams KN; Edwards D; Naden AB; Yao Y; Neumayer SM; Kumar A; Rodriguez BJ; Bassiri-Gharb N
    Small Methods; 2021 Dec; 5(12):e2100552. PubMed ID: 34928037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of the Electromechanical Measurements by Piezoresponse Force Microscopy.
    Buragohain P; Lu H; Richter C; Schenk T; Kariuki P; Glinsek S; Funakubo H; Íñiguez J; Defay E; Schroeder U; Gruverman A
    Adv Mater; 2022 Nov; 34(47):e2206237. PubMed ID: 36210741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectricity of Bi
    Jia T; Yang L; Zhang J; Kimura H; Zhao H; Guo Q; Cheng Z
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy.
    Labardi M; Magnani A; Capaccioli S
    Nanotechnology; 2020 Feb; 31(7):075707. PubMed ID: 31665710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatically-blind quantitative piezoresponse force microscopy free of distributed-force artifacts.
    Killgore JP; Robins L; Collins L
    Nanoscale Adv; 2022 Apr; 4(8):2036-2045. PubMed ID: 36133417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.
    Brennan CJ; Ghosh R; Koul K; Banerjee SK; Lu N; Yu ET
    Nano Lett; 2017 Sep; 17(9):5464-5471. PubMed ID: 28763615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A folded π-system with supramolecularly oriented dipoles: single-component piezoelectric relaxor with NLO activity.
    De S; Asthana D; Thirmal C; Keshri SK; Ghosh RK; Hundal G; Kumar R; Singh S; Chatterjee R; Mukhopadhyay P
    Chem Sci; 2023 Mar; 14(10):2547-2552. PubMed ID: 36908941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector piezoresponse force microscopy.
    Kalinin SV; Rodriguez BJ; Jesse S; Shin J; Baddorf AP; Gupta P; Jain H; Williams DB; Gruverman A
    Microsc Microanal; 2006 Jun; 12(3):206-20. PubMed ID: 17481357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale mapping of heterogeneity of the polarization reversal in lead-free relaxor-ferroelectric ceramic composites.
    Gobeljic D; Shvartsman VV; Belianinov A; Okatan B; Jesse S; Kalinin SV; Groh C; Rödel J; Lupascu DC
    Nanoscale; 2016 Jan; 8(4):2168-76. PubMed ID: 26731664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistive switching and polarization reversal of hydrothermal-method-grown undoped zinc oxide nanorods by using scanning probe microscopy techniques.
    Xiao J; Ong WL; Guo Z; Ho GW; Zeng K
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11412-22. PubMed ID: 25955035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of polar nanoregions in lead-free relaxors via piezoresponse force microscopy in torsional dual AC resonance tracking mode.
    Liu N; Dittmer R; Stark RW; Dietz C
    Nanoscale; 2015 Jul; 7(27):11787-96. PubMed ID: 26106953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation.
    Calahorra Y; Kim W; Vukajlovic-Plestina J; Fontcuberta I Morral A; Kar-Narayan S
    Nanotechnology; 2020 Oct; 31(40):404003. PubMed ID: 32521513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity.
    Xie S; Gannepalli A; Chen QN; Liu Y; Zhou Y; Proksch R; Li J
    Nanoscale; 2012 Jan; 4(2):408-13. PubMed ID: 22101512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.