BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33429683)

  • 1. Theranostic Nanoparticles for MRI-Guided Thermochemotherapy: "Tight" Clustering of Magnetic Nanoparticles Boosts Relaxivity and Heat-Generation Power.
    Hayashi K; Sato Y; Sakamoto W; Yogo T
    ACS Biomater Sci Eng; 2017 Jan; 3(1):95-105. PubMed ID: 33429683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T
    Brennan G; Bergamino S; Pescio M; Tofail SAM; Silien C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics.
    Ray S; Li Z; Hsu CH; Hwang LP; Lin YC; Chou PT; Lin YY
    Theranostics; 2018; 8(22):6322-6349. PubMed ID: 30613300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu
    Ge R; Lin M; Li X; Liu S; Wang W; Li S; Zhang X; Liu Y; Liu L; Shi F; Sun H; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19706-19716. PubMed ID: 28553876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Interaction of Multifunctional Core-Shell Nanoparticles for Highly Effective Theranostics.
    Yang MD; Ho CH; Ruta S; Chantrell R; Krycka K; Hovorka O; Chen FR; Lai PS; Lai CH
    Adv Mater; 2018 Dec; 30(50):e1802444. PubMed ID: 30311278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple Therapy of HER2
    Zolata H; Afarideh H; Davani FA
    Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy.
    Feng Q; Zhang Y; Zhang W; Hao Y; Wang Y; Zhang H; Hou L; Zhang Z
    Acta Biomater; 2017 Feb; 49():402-413. PubMed ID: 27890732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Controlled Hyperthermia & MRI Contrast Enhancement via Iron Oxide Embedded Hydroxyapatite Superparamagnetic particles for Theranostic Application.
    Ereath Beeran A; Fernandez FB; Varma PRH
    ACS Biomater Sci Eng; 2019 Jan; 5(1):106-113. PubMed ID: 33405868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy.
    Thirunavukkarasu GK; Cherukula K; Lee H; Jeong YY; Park IK; Lee JY
    Biomaterials; 2018 Oct; 180():240-252. PubMed ID: 30055399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.
    Zhao L; Huo M; Liu J; Yao Z; Li D; Zhao Z; Tang J
    J Nanosci Nanotechnol; 2013 Feb; 13(2):741-5. PubMed ID: 23646507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theranostic magnetic nanoparticles.
    Yoo D; Lee JH; Shin TH; Cheon J
    Acc Chem Res; 2011 Oct; 44(10):863-74. PubMed ID: 21823593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia.
    Chen L; Wu Y; Wu H; Li J; Xie J; Zang F; Ma M; Gu N; Zhang Y
    Acta Biomater; 2019 Sep; 96():491-504. PubMed ID: 31302299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance.
    Abed Z; Beik J; Laurent S; Eslahi N; Khani T; Davani ES; Ghaznavi H; Shakeri-Zadeh A
    J Cancer Res Clin Oncol; 2019 May; 145(5):1213-1219. PubMed ID: 30847551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of multifunctional magnetic nanoflakes for magnetic resonance imaging, hyperthermia, and targeting.
    Cervadoro A; Cho M; Key J; Cooper C; Stigliano C; Aryal S; Brazdeikis A; Leary JF; Decuzzi P
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12939-46. PubMed ID: 25003520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuously manufactured single-core iron oxide nanoparticles for cancer theranostics as valuable contribution in translational research.
    Bleul R; Baki A; Freese C; Paysen H; Kosch O; Wiekhorst F
    Nanoscale Adv; 2020 Oct; 2(10):4510-4521. PubMed ID: 36132895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery.
    Adam A; Mertz D
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.
    Xu H; Pan Y
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [T
    Zhou H; Qiu X; Shen Z
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Mar; 40(3):427-444. PubMed ID: 32376585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.