BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33429920)

  • 1. Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles.
    Bigazzi L; Gherardini S; Innocenti G; Basso M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33429920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
    Paull L; Thibault C; Nagaty A; Seto M; Li H
    IEEE Trans Cybern; 2014 Sep; 44(9):1605-18. PubMed ID: 25137689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH; Kim KW; Lee YW; Park KR
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles.
    Yang J; Thomas AG; Singh S; Baldi S; Wang X
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles.
    Audi A; Pierrot-Deseilligny M; Meynard C; Thom C
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28718788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision-Based SLAM System for Unmanned Aerial Vehicles.
    Munguía R; Urzua S; Bolea Y; Grau A
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Marker and MEMS IMU-Based Pose Estimation Method to Meet Multirotor UAV Landing Requirements.
    Wu Y; Niu X; Du J; Chang L; Tang H; Zhang H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Investigation of Unmanned Aerial Vehicles (UAVs): An In-Depth Analysis of Avionics Systems.
    Osmani K; Schulz D
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle.
    Gnanasekera M; Katupitiya J; Savkin AV; De Silva AHTE
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.
    Munguia R; Urzua S; Grau A
    PLoS One; 2016; 11(12):e0167197. PubMed ID: 28033385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.
    Lin L; Yang Y; Cheng H; Chen X
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.
    Nguyen PH; Arsalan M; Koo JH; Naqvi RA; Truong NQ; Park KR
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Fully Autonomous UAVs: A Survey.
    Elmokadem T; Savkin AV
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor Fusion Algorithm Using a Model-Based Kalman Filter for the Position and Attitude Estimation of Precision Aerial Delivery Systems.
    Garcia-Huerta RA; González-Jiménez LE; Villalon-Turrubiates IE
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32933223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.
    Vetrella AR; Fasano G; Accardo D; Moccia A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation.
    Ilci V; Toth C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Radio-Frequency Sensor Wake-Up with Unmanned Aerial Vehicles as an Aerial Gateway.
    Chen J; Dai Z; Chen Z
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observer-based controller for VTOL-UAVs tracking using direct Vision-Aided Inertial Navigation measurements.
    Hashim HA; Eltoukhy AEE; Odry A
    ISA Trans; 2023 Jun; 137():133-143. PubMed ID: 36588058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.