These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33429956)

  • 1. Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles.
    Park Y; Kang H; Jeong W; Son H; Ha DH
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33429956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact Enhancement in Nanoparticle Assemblies through Electrophoretic Deposition.
    Park Y; Jeong W; Ahn J; Hong YK; Hwang E; Kim M; Hwang YJ; Oh SJ; Ha DH
    ACS Omega; 2022 Nov; 7(45):41021-41032. PubMed ID: 36406526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition.
    Otelaja OO; Ha DH; Ly T; Zhang H; Robinson RD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18911-20. PubMed ID: 25314692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A General Method for High-Performance Li-Ion Battery Electrodes from Colloidal Nanoparticles without the Introduction of Binders or Conductive-Carbon Additives: The Cases of MnS, Cu(2-x)S, and Ge.
    Ha DH; Ly T; Caron JM; Zhang H; Fritz KE; Robinson RD
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25053-60. PubMed ID: 26535449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hafnium Oxide Nanostructured Thin Films: Electrophoretic Deposition Process and DUV Photolithography Patterning.
    Proust V; Kirscher Q; Nguyen TKN; Obringer L; Ishii K; Rault L; Demange V; Berthebaud D; Ohashi N; Uchikoshi T; Berling D; Soppera O; Grasset F
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle-Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layer-by-Layer Assembly.
    Ko Y; Kwon CH; Lee SW; Cho J
    Adv Mater; 2020 Dec; 32(51):e2001924. PubMed ID: 32954530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields.
    Ferrick A; Wang M; Woehl TJ
    Langmuir; 2018 May; 34(21):6237-6248. PubMed ID: 29727566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle ΞΆ -potentials.
    Doane TL; Chuang CH; Hill RJ; Burda C
    Acc Chem Res; 2012 Mar; 45(3):317-26. PubMed ID: 22074988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Do Colloidal Nanoparticles Move in a Solution under an Electric Field?:
    Jeong W; Park Y; Hong YK; Kim I; Son H; Ha DH
    J Phys Chem Lett; 2023 Feb; 14(5):1230-1238. PubMed ID: 36716325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic Deposition of Hybrid Calcium Alginate-Gold Nanoparticle Hydrogel Films via Catalyzed Electrooxidation of Hydroquinone.
    Nambiar HN; Zamborini FP
    Langmuir; 2023 May; 39(18):6495-6504. PubMed ID: 37093690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Dependent Electrophoretic Deposition of Catalytic Gold Nanoparticles.
    Masitas RA; Allen SL; Zamborini FP
    J Am Chem Soc; 2016 Nov; 138(47):15295-15298. PubMed ID: 27806201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for Surface Enhanced Ram Scattering-Based Detection of Trace Heavy-Metal Ions.
    Bao H; Zhang H; Zhou L; Fu H; Liu G; Li Y; Cai W
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28145-28153. PubMed ID: 31290313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black.
    Ha DH; Islam MA; Robinson RD
    Nano Lett; 2012 Oct; 12(10):5122-30. PubMed ID: 22963404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chelating Agent Functionalized Substrates for the Formation of Thick Films
    Mills SC; Starr NE; Bohannon NJ; Andrew JS
    Front Chem; 2021; 9():703528. PubMed ID: 34222203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+.
    Goon IY; Zhang C; Lim M; Gooding JJ; Amal R
    Langmuir; 2010 Jul; 26(14):12247-52. PubMed ID: 20527930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells.
    Woo HK; Kang MS; Park T; Bang J; Jeon S; Lee WS; Ahn J; Cho G; Ko DK; Kim Y; Ha DH; Oh SJ
    Nanoscale; 2019 Oct; 11(37):17498-17505. PubMed ID: 31532437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating Polymer Transformation during the Encapsulation of Metal Nanoparticles by Polystyrene-
    Song X; Liu C; Liu X; Liu S
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3969-3975. PubMed ID: 31867959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-Selective Electrophoretic Deposition of Gold Nanoparticles Mediated by Hydroquinone Oxidation.
    Allen SL; Zamborini FP
    Langmuir; 2019 Feb; 35(6):2137-2145. PubMed ID: 30649886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.