BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 33430140)

  • 1. A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease.
    Burtscher J; Maglione V; Di Pardo A; Millet GP; Schwarzer C; Zangrandi L
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33430140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.
    Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS
    J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases.
    Konovalova J; Gerasymchuk D; Parkkinen I; Chmielarz P; Domanskyi A
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31801298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Huntingtin and its role in neuronal degeneration.
    Li SH; Li XJ
    Neuroscientist; 2004 Oct; 10(5):467-75. PubMed ID: 15359012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives.
    Schapira AH; Olanow CW; Greenamyre JT; Bezard E
    Lancet; 2014 Aug; 384(9942):545-55. PubMed ID: 24954676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetics in Huntington's disease.
    Grünewald T; Beal MF
    Ann N Y Acad Sci; 1999; 893():203-13. PubMed ID: 10672239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The paradigm of Huntington's disease: therapeutic opportunities in neurodegeneration.
    Leegwater-Kim J; Cha JH
    NeuroRx; 2004 Jan; 1(1):128-38. PubMed ID: 15717013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyglutamine aggregation in Huntington's disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation.
    Seidel K; Siswanto S; Fredrich M; Bouzrou M; Brunt ER; van Leeuwen FW; Kampinga HH; Korf HW; Rüb U; den Dunnen WF
    Neuropathol Appl Neurobiol; 2016 Feb; 42(2):153-66. PubMed ID: 26095752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared and oppositely regulated transcriptomic signatures in Huntington's disease and brain ischemia confirm known and unveil novel potential neuroprotective genes.
    Yildirim F; Foddis M; Blumenau S; Müller S; Kajetan B; Holtgrewe M; Kola V; Beule D; Sassi C
    Neurobiol Aging; 2021 Aug; 104():122.e1-122.e17. PubMed ID: 33875290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity.
    Palazuelos J; Aguado T; Pazos MR; Julien B; Carrasco C; Resel E; Sagredo O; Benito C; Romero J; Azcoitia I; Fernández-Ruiz J; Guzmán M; Galve-Roperh I
    Brain; 2009 Nov; 132(Pt 11):3152-64. PubMed ID: 19805493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease.
    Valencia A; Reeves PB; Sapp E; Li X; Alexander J; Kegel KB; Chase K; Aronin N; DiFiglia M
    J Neurosci Res; 2010 Jan; 88(1):179-90. PubMed ID: 19642201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible cellular mechanism accounting for the cell type-specific vulnerability in Huntington's disease.
    Centonze D; Giacomini P; Tolu M; Bernardi G; Calabresi P
    Funct Neurol; 2000; 15(4):253-8. PubMed ID: 11213528
    [No Abstract]   [Full Text] [Related]  

  • 13. Coupling of the NMDA receptor to neuroprotective and neurodestructive events.
    Hardingham GE
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1147-60. PubMed ID: 19909238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease.
    Brustovetsky N; LaFrance R; Purl KJ; Brustovetsky T; Keene CD; Low WC; Dubinsky JM
    J Neurochem; 2005 Jun; 93(6):1361-70. PubMed ID: 15935052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel proteomic changes in brain mitochondria provide insights into mitochondrial dysfunction in mouse models of Huntington's disease.
    Agrawal S; Fox JH
    Mitochondrion; 2019 Jul; 47():318-329. PubMed ID: 30902619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective neuronal degeneration in Huntington's disease.
    Cowan CM; Raymond LA
    Curr Top Dev Biol; 2006; 75():25-71. PubMed ID: 16984809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long non-coding RNAs in Huntington's disease neurodegeneration.
    Johnson R
    Neurobiol Dis; 2012 May; 46(2):245-54. PubMed ID: 22202438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular targets and therapeutic strategies in Huntington's disease.
    Rego AC; de Almeida LP
    Curr Drug Targets CNS Neurol Disord; 2005 Aug; 4(4):361-81. PubMed ID: 16101555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PINK1-induced mitophagy promotes neuroprotection in Huntington's disease.
    Khalil B; El Fissi N; Aouane A; Cabirol-Pol MJ; Rival T; Liévens JC
    Cell Death Dis; 2015 Jan; 6(1):e1617. PubMed ID: 25611391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.