These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 33430694)
21. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. Tom VJ; Sandrow-Feinberg HR; Miller K; Santi L; Connors T; Lemay MA; Houlé JD J Neurosci; 2009 Nov; 29(47):14881-90. PubMed ID: 19940184 [TBL] [Abstract][Full Text] [Related]
22. Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. Estrada V; Brazda N; Schmitz C; Heller S; Blazyca H; Martini R; Müller HW Neurobiol Dis; 2014 Jul; 67():165-79. PubMed ID: 24713436 [TBL] [Abstract][Full Text] [Related]
23. Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans Guijarro-Belmar A; Viskontas M; Wei Y; Bo X; Shewan D; Huang W J Neurosci; 2019 Oct; 39(42):8330-8346. PubMed ID: 31409666 [TBL] [Abstract][Full Text] [Related]
24. Spinal cord regeneration. Young W Cell Transplant; 2014; 23(4-5):573-611. PubMed ID: 24816452 [TBL] [Abstract][Full Text] [Related]
25. Respiratory axon regeneration in the chronically injured spinal cord. Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016 [TBL] [Abstract][Full Text] [Related]
26. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function. Boido M; Garbossa D; Vercelli A J Neurosurg Spine; 2011 Jul; 15(1):97-106. PubMed ID: 21456892 [TBL] [Abstract][Full Text] [Related]
27. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497 [TBL] [Abstract][Full Text] [Related]
28. Transplantation of Heat-Shock Preconditioned Neural Stem/Progenitor Cells Combined with RGD-Functionalised Hydrogel Promotes Spinal Cord Functional Recovery in a Rat Hemi-Transection Model. Kim WK; Kang BJ Stem Cell Rev Rep; 2024 Jan; 20(1):283-300. PubMed ID: 37821771 [TBL] [Abstract][Full Text] [Related]
29. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. Huang X; Kim JM; Kong TH; Park SR; Ha Y; Kim MH; Park H; Yoon SH; Park HC; Park JO; Min BH; Choi BH J Neurol Sci; 2009 Feb; 277(1-2):87-97. PubMed ID: 19033079 [TBL] [Abstract][Full Text] [Related]
30. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Günther MI; Weidner N; Müller R; Blesch A Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141 [TBL] [Abstract][Full Text] [Related]
31. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. Cheng CH; Lin CT; Lee MJ; Tsai MJ; Huang WH; Huang MC; Lin YL; Chen CJ; Huang WC; Cheng H PLoS One; 2015; 10(9):e0138705. PubMed ID: 26393921 [TBL] [Abstract][Full Text] [Related]
32. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
33. Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells. Wright KT; Uchida K; Bara JJ; Roberts S; El Masri W; Johnson WE Spine J; 2014 Aug; 14(8):1722-33. PubMed ID: 24462452 [TBL] [Abstract][Full Text] [Related]
34. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251 [TBL] [Abstract][Full Text] [Related]
35. Combining peripheral nerve grafting and matrix modulation to repair the injured rat spinal cord. Houle JD; Amin A; Cote MP; Lemay M; Miller K; Sandrow H; Santi L; Shumsky J; Tom V J Vis Exp; 2009 Nov; (33):. PubMed ID: 19935638 [TBL] [Abstract][Full Text] [Related]
36. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124 [TBL] [Abstract][Full Text] [Related]
37. Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration. Tuinstra HM; Margul DJ; Goodman AG; Boehler RM; Holland SJ; Zelivyanskaya ML; Cummings BJ; Anderson AJ; Shea LD Tissue Eng Part A; 2014 Mar; 20(5-6):1027-37. PubMed ID: 24168314 [TBL] [Abstract][Full Text] [Related]
38. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
39. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs. Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700 [TBL] [Abstract][Full Text] [Related]