These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]
43. Experimental Strategies to Bridge Large Tissue Gaps in the Injured Spinal Cord after Acute and Chronic Lesion. Brazda N; Estrada V; Voss C; Seide K; Trieu HK; Müller HW J Vis Exp; 2016 Apr; (110):e53331. PubMed ID: 27077921 [TBL] [Abstract][Full Text] [Related]
44. Defining Spatial Relationships Between Spinal Cord Axons and Blood Vessels in Hydrogel Scaffolds. Siddiqui AM; Oswald D; Papamichalopoulos S; Kelly D; Summer P; Polzin M; Hakim J; Schmeichel AM; Chen B; Yaszemski MJ; Windebank AJ; Madigan NN Tissue Eng Part A; 2021 Jun; 27(11-12):648-664. PubMed ID: 33764164 [TBL] [Abstract][Full Text] [Related]
45. Antisense vimentin cDNA combined with chondroitinase ABC promotes axon regeneration and functional recovery following spinal cord injury in rats. Xia Y; Yan Y; Xia H; Zhao T; Chu W; Hu S; Feng H; Lin J Neurosci Lett; 2015 Mar; 590():74-9. PubMed ID: 25641132 [TBL] [Abstract][Full Text] [Related]
46. Astroglial-derived periostin promotes axonal regeneration after spinal cord injury. Shih CH; Lacagnina M; Leuer-Bisciotti K; Pröschel C J Neurosci; 2014 Feb; 34(7):2438-43. PubMed ID: 24523534 [TBL] [Abstract][Full Text] [Related]
47. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785 [TBL] [Abstract][Full Text] [Related]
48. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats--possible roles of brain-derived neurotrophic factor, TrkB and p75 neurotrophin receptor. Li F; Li L; Song XY; Zhong JH; Luo XG; Xian CJ; Zhou XF Eur J Neurosci; 2009 Oct; 30(7):1280-96. PubMed ID: 19788572 [TBL] [Abstract][Full Text] [Related]
49. A computational model of bidirectional axonal growth in micro-tissue engineered neuronal networks (micro-TENNs). Marinov T; López Sánchez HA; Yuchi L; Adewole DO; Cullen DK; Kraft RH In Silico Biol; 2020; 14(1-2):85-99. PubMed ID: 32390612 [TBL] [Abstract][Full Text] [Related]
50. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury. Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857 [TBL] [Abstract][Full Text] [Related]
51. Required growth facilitators propel axon regeneration across complete spinal cord injury. Anderson MA; O'Shea TM; Burda JE; Ao Y; Barlatey SL; Bernstein AM; Kim JH; James ND; Rogers A; Kato B; Wollenberg AL; Kawaguchi R; Coppola G; Wang C; Deming TJ; He Z; Courtine G; Sofroniew MV Nature; 2018 Sep; 561(7723):396-400. PubMed ID: 30158698 [TBL] [Abstract][Full Text] [Related]
52. Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. Pawar K; Cummings BJ; Thomas A; Shea LD; Levine A; Pfaff S; Anderson AJ Biomaterials; 2015 Oct; 65():1-12. PubMed ID: 26134079 [TBL] [Abstract][Full Text] [Related]
53. Binary scaffold facilitates in situ regeneration of axons and neurons for complete spinal cord injury repair. Liu D; Shu M; Liu W; Shen Y; Long G; Zhao Y; Hou X; Xiao Z; Dai J; Li X Biomater Sci; 2021 Apr; 9(8):2955-2971. PubMed ID: 33634811 [TBL] [Abstract][Full Text] [Related]
54. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Pfeifer K; Vroemen M; Blesch A; Weidner N Eur J Neurosci; 2004 Oct; 20(7):1695-704. PubMed ID: 15379990 [TBL] [Abstract][Full Text] [Related]
56. Intrinsic and extrinsic determinants of central nervous system axon outgrowth into alginate-based anisotropic hydrogels. Pawar K; Prang P; Müller R; Caioni M; Bogdahn U; Kunz W; Weidner N Acta Biomater; 2015 Nov; 27():131-139. PubMed ID: 26310676 [TBL] [Abstract][Full Text] [Related]
57. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord. Altinova H; Möllers S; Führmann T; Deumens R; Bozkurt A; Heschel I; Damink LH; Schügner F; Weis J; Brook GA Brain Res; 2014 Oct; 1585():37-50. PubMed ID: 25193604 [TBL] [Abstract][Full Text] [Related]
58. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Sachdeva R; Theisen CC; Ninan V; Twiss JL; Houlé JD Exp Neurol; 2016 Feb; 276():72-82. PubMed ID: 26366525 [TBL] [Abstract][Full Text] [Related]
59. Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Yao S; Yu S; Cao Z; Yang Y; Yu X; Mao HQ; Wang LN; Sun X; Zhao L; Wang X Int J Nanomedicine; 2018; 13():2883-2895. PubMed ID: 29844671 [TBL] [Abstract][Full Text] [Related]