BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

677 related articles for article (PubMed ID: 33430769)

  • 1. JOINT for large-scale single-cell RNA-sequencing analysis via soft-clustering and parallel computing.
    Cui T; Wang T
    BMC Genomics; 2021 Jan; 22(1):47. PubMed ID: 33430769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive assessment of hurdle and zero-inflated models for single cell RNA-sequencing analysis.
    Cui T; Wang T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consensus clustering of single-cell RNA-seq data by enhancing network affinity.
    Cui Y; Zhang S; Liang Y; Wang X; Ferraro TN; Chen Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34160582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrastive self-supervised clustering of scRNA-seq data.
    Ciortan M; Defrance M
    BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Multi-Constraint Soft Clustering Analysis for Single-Cell RNA-Seq Data via Zero-Inflated Autoencoder Embedding.
    He Y; Chen X; Tu NH; Luo J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2254-2265. PubMed ID: 37022218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data.
    Malec M; Kurban H; Dalkilic M
    BMC Bioinformatics; 2022 Jul; 23(1):291. PubMed ID: 35869420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.