These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
690 related articles for article (PubMed ID: 33430769)
1. JOINT for large-scale single-cell RNA-sequencing analysis via soft-clustering and parallel computing. Cui T; Wang T BMC Genomics; 2021 Jan; 22(1):47. PubMed ID: 33430769 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive assessment of hurdle and zero-inflated models for single cell RNA-sequencing analysis. Cui T; Wang T Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507115 [TBL] [Abstract][Full Text] [Related]
3. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
4. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data. Qiu Y; Yan C; Zhao P; Zou Q Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068 [TBL] [Abstract][Full Text] [Related]
5. Consensus clustering of single-cell RNA-seq data by enhancing network affinity. Cui Y; Zhang S; Liang Y; Wang X; Ferraro TN; Chen Y Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34160582 [TBL] [Abstract][Full Text] [Related]
6. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Gan Y; Huang X; Zou G; Zhou S; Guan J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334 [TBL] [Abstract][Full Text] [Related]
7. Contrastive self-supervised clustering of scRNA-seq data. Ciortan M; Defrance M BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773 [TBL] [Abstract][Full Text] [Related]
8. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data. Wu W; Liu Z; Ma X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230 [TBL] [Abstract][Full Text] [Related]
9. Attention-based deep clustering method for scRNA-seq cell type identification. Li S; Guo H; Zhang S; Li Y; Li M PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464 [TBL] [Abstract][Full Text] [Related]
10. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
11. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data. Wang Z; Wang H; Zhao J; Zheng C BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310 [TBL] [Abstract][Full Text] [Related]
12. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data. Wu W; Ma X Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821 [TBL] [Abstract][Full Text] [Related]
14. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation. Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924 [TBL] [Abstract][Full Text] [Related]
15. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
16. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning. Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817 [TBL] [Abstract][Full Text] [Related]
17. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
18. Deep Multi-Constraint Soft Clustering Analysis for Single-Cell RNA-Seq Data via Zero-Inflated Autoencoder Embedding. He Y; Chen X; Tu NH; Luo J IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2254-2265. PubMed ID: 37022218 [TBL] [Abstract][Full Text] [Related]
19. ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data. Malec M; Kurban H; Dalkilic M BMC Bioinformatics; 2022 Jul; 23(1):291. PubMed ID: 35869420 [TBL] [Abstract][Full Text] [Related]
20. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts. Azim R; Wang S; Dipu SA Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]