These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33430784)

  • 61. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze).
    Jayaswall K; Mahajan P; Singh G; Parmar R; Seth R; Raina A; Swarnkar MK; Singh AK; Shankar R; Sharma RK
    Sci Rep; 2016 Jul; 6():30412. PubMed ID: 27465480
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana 'Guijiao 9' in response to Fusarium wilt.
    Sun J; Zhang J; Fang H; Peng L; Wei S; Li C; Zheng S; Lu J
    Plant Physiol Biochem; 2019 Aug; 141():83-94. PubMed ID: 31136934
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genome-wide transcriptome analysis and identification of benzothiadiazole-induced genes and pathways potentially associated with defense response in banana.
    Cheng Z; Yu X; Li S; Wu Q
    BMC Genomics; 2018 Jun; 19(1):454. PubMed ID: 29898655
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust.
    Wang Y; Huang L; Luo W; Jin Y; Gong F; He J; Liu D; Zheng Y; Wu B
    Gene; 2021 Feb; 768():145290. PubMed ID: 33157204
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expression profile analysis of maize in response to Setosphaeria turcica.
    Shi F; Zhang Y; Wang K; Meng Q; Liu X; Ma L; Li Y; Liu J; Ma L
    Gene; 2018 Jun; 659():100-108. PubMed ID: 29548860
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection.
    Gervasi F; Ferrante P; Dettori MT; Scortichini M; Verde I
    PLoS One; 2018; 13(4):e0196590. PubMed ID: 29698473
    [TBL] [Abstract][Full Text] [Related]  

  • 67. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes.
    Qi X; Zhang L; Han Y; Ren X; Huang J; Chen H
    BMC Genomics; 2015 Dec; 16():1086. PubMed ID: 26689283
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection.
    Allie F; Pierce EJ; Okoniewski MJ; Rey C
    BMC Genomics; 2014 Nov; 15():1006. PubMed ID: 25412561
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monitoring of the Cowpea Bruchid, Callosobruchus maculatus (Coleoptera: Bruchidae), Feeding Activity in Cowpea Seeds: Advances in Sensing Technologies Reveals New Insights.
    Bittner JA; Balfe S; Pittendrigh BR; Popovics JS
    J Econ Entomol; 2018 May; 111(3):1469-1475. PubMed ID: 29659900
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Purification and properties of storage proteins (vicilins) from cowpea (Vigna unguiculata) seeds which are susceptible or resistant to the bruchid beetle Callosobruchus maculatus.
    Macedo ML; Fernandes KV; Sales MP; Xavier-Filho J
    Braz J Med Biol Res; 1995 Feb; 28(2):183-90. PubMed ID: 7581039
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate.
    Liu D; Zhao Q; Cui X; Chen R; Li X; Qiu B; Ge F
    Genes Genomics; 2019 Dec; 41(12):1383-1396. PubMed ID: 31493262
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cloning of cDNA sequences encoding cowpea (Vigna unguiculata) vicilins: Computational simulations suggest a binding mode of cowpea vicilins to chitin oligomers.
    Rocha AJ; Sousa BL; Girão MS; Barroso-Neto IL; Monteiro-Júnior JE; Oliveira JTA; Nagano CS; Carneiro RF; Monteiro-Moreira ACO; Rocha BAM; Freire VN; Grangeiro TB
    Int J Biol Macromol; 2018 Oct; 117():565-573. PubMed ID: 29847781
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Novel Alleles of Two Tightly Linked Genes Encoding Polygalacturonase-Inhibiting Proteins (VrPGIP1 and VrPGIP2) Associated with the
    Kaewwongwal A; Chen J; Somta P; Kongjaimun A; Yimram T; Chen X; Srinives P
    Front Plant Sci; 2017; 8():1692. PubMed ID: 29033965
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize.
    Yu Y; Shi J; Li X; Liu J; Geng Q; Shi H; Ke Y; Sun Q
    BMC Genomics; 2018 Oct; 19(1):742. PubMed ID: 30305015
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance.
    Huang Y; Li L; Smith KP; Muehlbauer GJ
    BMC Genomics; 2016 May; 17():387. PubMed ID: 27206761
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transcriptional analyses of differential cultivars during resistant and susceptible interactions with Peronospora effusa, the causal agent of spinach downy mildew.
    Kandel SL; Hulse-Kemp AM; Stoffel K; Koike ST; Shi A; Mou B; Van Deynze A; Klosterman SJ
    Sci Rep; 2020 Apr; 10(1):6719. PubMed ID: 32317662
    [TBL] [Abstract][Full Text] [Related]  

  • 77. De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici.
    Hao C; Xia Z; Fan R; Tan L; Hu L; Wu B; Wu H
    BMC Genomics; 2016 Oct; 17(1):822. PubMed ID: 27769171
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transcriptome profile analysis of resistance induced by burdock fructooligosaccharide in tobacco.
    Guo M; Chen K; Zhang P
    J Plant Physiol; 2012 Oct; 169(15):1511-9. PubMed ID: 22921678
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transcriptomic and biochemical analyses of the accumulation of sucrose in mungbean (Vigna radiata (L.) Wilczek) leaves after pod removal.
    Ha J; Shim S; Lee T; Lee E; Yang X; Jeong H; Kim MY; Lee SH
    Theor Appl Genet; 2020 Aug; 133(8):2355-2362. PubMed ID: 32447408
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparative Transcriptome Analysis of Rutabaga (
    Zhou Q; Galindo-González L; Manolii V; Hwang SF; Strelkov SE
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.