BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33430797)

  • 1. A deep learning model for diagnosing dystrophinopathies on thigh muscle MRI images.
    Yang M; Zheng Y; Xie Z; Wang Z; Xiao J; Zhang J; Yuan Y
    BMC Neurol; 2021 Jan; 21(1):13. PubMed ID: 33430797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The trefoil with single fruit sign in muscle magnetic resonance imaging is highly specific for dystrophinopathies.
    Zheng Y; Li W; Du J; Jin S; Li S; Zhao Y; Xu C; Wang Z; Lv H; Zhang W; Xiao J; Yuan Y
    Eur J Radiol; 2015 Oct; 84(10):1992-8. PubMed ID: 26119801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Value of muscle magnetic resonance imaging in the differential diagnosis of muscular dystrophies related to the dystrophin-glycoprotein complex.
    Xie Z; Xie Z; Yu M; Zheng Y; Sun C; Liu Y; Ling C; Zhu Y; Zhang W; Xiao J; Wang Z; Yuan Y
    Orphanet J Rare Dis; 2019 Nov; 14(1):250. PubMed ID: 31747956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of a machine learning muscle MRI-based tool for the diagnosis of muscular dystrophies.
    Verdú-Díaz J; Alonso-Pérez J; Nuñez-Peralta C; Tasca G; Vissing J; Straub V; Fernández-Torrón R; Llauger J; Illa I; Díaz-Manera J
    Neurology; 2020 Mar; 94(10):e1094-e1102. PubMed ID: 32029545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning tool without muscle-by-muscle grading to differentiate myositis from facio-scapulo-humeral dystrophy using MRI.
    Fabry V; Mamalet F; Laforet A; Capelle M; Acket B; Sengenes C; Cintas P; Faruch-Bilfeld M
    Diagn Interv Imaging; 2022; 103(7-8):353-359. PubMed ID: 35292217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
    Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning.
    Zhou LQ; Wu XL; Huang SY; Wu GG; Ye HR; Wei Q; Bao LY; Deng YB; Li XR; Cui XW; Dietrich CF
    Radiology; 2020 Jan; 294(1):19-28. PubMed ID: 31746687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study.
    Li X; Zhang S; Zhang Q; Wei X; Pan Y; Zhao J; Xin X; Qin C; Wang X; Li J; Yang F; Zhao Y; Yang M; Wang Q; Zheng Z; Zheng X; Yang X; Whitlow CT; Gurcan MN; Zhang L; Wang X; Pasche BC; Gao M; Zhang W; Chen K
    Lancet Oncol; 2019 Feb; 20(2):193-201. PubMed ID: 30583848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.
    Liu S; Utriainen D; Chai C; Chen Y; Wang L; Sethi SK; Xia S; Haacke EM
    Neuroimage; 2019 Sep; 198():271-282. PubMed ID: 31121296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated image quality evaluation of T
    Esses SJ; Lu X; Zhao T; Shanbhogue K; Dane B; Bruno M; Chandarana H
    J Magn Reson Imaging; 2018 Mar; 47(3):723-728. PubMed ID: 28577329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical approach to the genetic diagnosis of unsolved dystrophinopathies: a stepwise strategy in the genomic era.
    Xie Z; Sun C; Liu Y; Yu M; Zheng Y; Meng L; Wang G; Cornejo-Sanchez DM; Bharadwaj T; Yan J; Zhang L; Pineda-Trujillo N; Zhang W; Leal SM; Schrauwen I; Wang Z; Yuan Y
    J Med Genet; 2021 Nov; 58(11):743-751. PubMed ID: 32978268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Correlation between thigh muscle magnetic resonance imaging findings and clinical features of congenital muscular dystrophies: a preliminary study].
    Wang LL; Du J; Fu XN; Fan YB; Wei CJ; Ding J; Tan DD; Xiao JX; Xiong H
    Zhonghua Er Ke Za Zhi; 2016 Oct; 54(10):756-760. PubMed ID: 27784478
    [No Abstract]   [Full Text] [Related]  

  • 16. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study.
    Gao X; Wang X
    Diagn Interv Imaging; 2020 Feb; 101(2):91-100. PubMed ID: 31375430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images.
    He Y; Guo J; Ding X; van Ooijen PMA; Zhang Y; Chen A; Oudkerk M; Xie X
    Eur Radiol; 2019 Oct; 29(10):5441-5451. PubMed ID: 30859281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm.
    Ishioka J; Matsuoka Y; Uehara S; Yasuda Y; Kijima T; Yoshida S; Yokoyama M; Saito K; Kihara K; Numao N; Kimura T; Kudo K; Kumazawa I; Fujii Y
    BJU Int; 2018 Sep; 122(3):411-417. PubMed ID: 29772101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI.
    Zhong X; Cao R; Shakeri S; Scalzo F; Lee Y; Enzmann DR; Wu HH; Raman SS; Sung K
    Abdom Radiol (NY); 2019 Jun; 44(6):2030-2039. PubMed ID: 30460529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a logistic regression model to distinguish transition zone cancers from benign prostatic hyperplasia on multi-parametric prostate MRI.
    Iyama Y; Nakaura T; Katahira K; Iyama A; Nagayama Y; Oda S; Utsunomiya D; Yamashita Y
    Eur Radiol; 2017 Sep; 27(9):3600-3608. PubMed ID: 28289941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.