These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33430800)

  • 1. Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit.
    Das A; Basu PS; Kumar M; Ansari J; Shukla A; Thakur S; Singh P; Datta S; Chaturvedi SK; Sheshshayee MS; Bansal KC; Singh NP
    BMC Plant Biol; 2021 Jan; 21(1):39. PubMed ID: 33430800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes.
    Anbazhagan K; Bhatnagar-Mathur P; Vadez V; Dumbala SR; Kishor PB; Sharma KK
    Plant Cell Rep; 2015 Feb; 34(2):199-210. PubMed ID: 25326370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice.
    Ravikumar G; Manimaran P; Voleti SR; Subrahmanyam D; Sundaram RM; Bansal KC; Viraktamath BC; Balachandran SM
    Transgenic Res; 2014 Jun; 23(3):421-39. PubMed ID: 24398893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chickpea WRKY70 Regulates the Expression of a Homeodomain-Leucine Zipper (HD-Zip) I Transcription Factor CaHDZ12, which Confers Abiotic Stress Tolerance in Transgenic Tobacco and Chickpea.
    Sen S; Chakraborty J; Ghosh P; Basu D; Das S
    Plant Cell Physiol; 2017 Nov; 58(11):1934-1952. PubMed ID: 29016956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis.
    Yu X; Liu Y; Wang S; Tao Y; Wang Z; Shu Y; Peng H; Mijiti A; Wang Z; Zhang H; Ma H
    Plant Cell Rep; 2016 Mar; 35(3):613-27. PubMed ID: 26650836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.
    Deokar AA; Kondawar V; Kohli D; Aslam M; Jain PK; Karuppayil SM; Varshney RK; Srinivasan R
    Funct Integr Genomics; 2015 Jan; 15(1):27-46. PubMed ID: 25274312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.
    Wei T; Deng K; Liu D; Gao Y; Liu Y; Yang M; Zhang L; Zheng X; Wang C; Song W; Chen C; Zhang Y
    Plant Cell Physiol; 2016 Aug; 57(8):1593-609. PubMed ID: 27485523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
    Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set.
    Pang J; Turner NC; Khan T; Du YL; Xiong JL; Colmer TD; Devilla R; Stefanova K; Siddique KHM
    J Exp Bot; 2017 Apr; 68(8):1973-1985. PubMed ID: 27099375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress.
    Kaur H; Verma P; Petla BP; Rao V; Saxena SC; Majee M
    Planta; 2013 Jan; 237(1):321-35. PubMed ID: 23065054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission.
    Mishra KB; Iannacone R; Petrozza A; Mishra A; Armentano N; La Vecchia G; Trtílek M; Cellini F; Nedbal L
    Plant Sci; 2012 Jan; 182():79-86. PubMed ID: 22118618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.).
    Sachdeva S; Bharadwaj C; Singh RK; Jain PK; Patil BS; Roorkiwal M; Varshney R
    PLoS One; 2020; 15(7):e0234550. PubMed ID: 32663226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea.
    Thakro V; Malik N; Basu U; Srivastava R; Narnoliya L; Daware A; Varshney N; Mohanty JK; Bajaj D; Dwivedi V; Tripathi S; Jha UC; Dixit GP; Singh AK; Tyagi AK; Upadhyaya HD; Parida SK
    Plant Physiol; 2023 Mar; 191(3):1884-1912. PubMed ID: 36477336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.
    Deokar AA; Kondawar V; Jain PK; Karuppayil SM; Raju NL; Vadez V; Varshney RK; Srinivasan R
    BMC Plant Biol; 2011 Apr; 11():70. PubMed ID: 21513527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought stress resistance indicators of chickpea varieties grown under deficit irrigation conditions.
    Ucak AB; Arslan H
    PeerJ; 2023; 11():e14818. PubMed ID: 36923507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.).
    Varshney RK; Hiremath PJ; Lekha P; Kashiwagi J; Balaji J; Deokar AA; Vadez V; Xiao Y; Srinivasan R; Gaur PM; Siddique KH; Town CD; Hoisington DA
    BMC Genomics; 2009 Nov; 10():523. PubMed ID: 19912666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.).
    Bhalani H; Thankappan R; Mishra GP; Sarkar T; Bosamia TC; Dobaria JR
    PLoS One; 2019; 14(5):e0216706. PubMed ID: 31071165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance.
    Polizel AM; Medri ME; Nakashima K; Yamanaka N; Farias JR; de Oliveira MC; Marin SR; Abdelnoor RV; Marcelino-Guimarães FC; Fuganti R; Rodrigues FA; Stolf-Moreira R; Beneventi MA; Rolla AA; Neumaier N; Yamaguchi-Shinozaki K; Carvalho JF; Nepomuceno AL
    Genet Mol Res; 2011 Oct; 10(4):3641-56. PubMed ID: 22033903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Review on Chickpea (
    Arriagada O; Cacciuttolo F; Cabeza RA; Carrasco B; Schwember AR
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress.
    Moenga SM; Gai Y; Carrasquilla-Garcia N; Perilla-Henao LM; Cook DR
    Plant J; 2020 Dec; 104(5):1195-1214. PubMed ID: 32920943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.