These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33430966)

  • 1. EDock: blind protein-ligand docking by replica-exchange monte carlo simulation.
    Zhang W; Bell EW; Yin M; Zhang Y
    J Cheminform; 2020 May; 12(1):37. PubMed ID: 33430966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.
    Wang H; Liu H; Cai L; Wang C; Lv Q
    BMC Bioinformatics; 2017 Jul; 18(1):327. PubMed ID: 28693470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo replica-exchange based ensemble docking of protein conformations.
    Zhang Z; Ehmann U; Zacharias M
    Proteins; 2017 May; 85(5):924-937. PubMed ID: 28168752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures.
    Lee HS; Zhang Y
    Proteins; 2012 Jan; 80(1):93-110. PubMed ID: 21971880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.
    Feinstein WP; Brylinski M
    J Cheminform; 2015; 7():18. PubMed ID: 26082804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FlexAID: Revisiting Docking on Non-Native-Complex Structures.
    Gaudreault F; Najmanovich RJ
    J Chem Inf Model; 2015 Jul; 55(7):1323-36. PubMed ID: 26076070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATPdock: a template-based method for ATP-specific protein-ligand docking.
    Rao L; Jia NX; Hu J; Yu DJ; Zhang GJ
    Bioinformatics; 2022 Jan; 38(2):556-558. PubMed ID: 34546290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining fragment docking with graph theory to improve ligand docking for homology model structures.
    Sarfaraz S; Muneer I; Liu H
    J Comput Aided Mol Des; 2020 Dec; 34(12):1237-1259. PubMed ID: 33034007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.
    Tai HK; Jusoh SA; Siu SWI
    J Cheminform; 2018 Dec; 10(1):62. PubMed ID: 30552524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving protein-ligand docking results using the Semiempirical quantum mechanics: testing on the PDBbind 2016 core set.
    Mohebbinia Z; Firouzi R; Karimi-Jafari MH
    J Biomol Struct Dyn; 2024 Jan; ():1-11. PubMed ID: 38165642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo refinement of rigid-body protein docking structures with backbone displacement and side-chain optimization.
    Lorenzen S; Zhang Y
    Protein Sci; 2007 Dec; 16(12):2716-25. PubMed ID: 17965193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle-way flexible docking: Pose prediction using mixed-resolution Monte Carlo in estrogen receptor α.
    Spiriti J; Subramanian SR; Palli R; Wu M; Zuckerman DM
    PLoS One; 2019; 14(4):e0215694. PubMed ID: 31013302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Enhanced Sampling Monte Carlo Methods for High-Resolution Protein-Protein Docking in Rosetta.
    Zhang Z; Schindler CE; Lange OF; Zacharias M
    PLoS One; 2015; 10(6):e0125941. PubMed ID: 26053419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Blind Docking in DOCK6 through an Automated Preliminary Fragment Probing Strategy.
    Jofily P; Pascutti PG; Torres PHM
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33668914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.
    Dixit A; Verkhivker GM
    J Chem Inf Model; 2012 Oct; 52(10):2501-15. PubMed ID: 22992037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting near-native docking decoys by Monte Carlo stability analysis.
    Lorenzen S
    Genome Inform; 2007; 18():206-14. PubMed ID: 18546488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.