These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33430985)

  • 1. Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation.
    Kwon Y; Yoo J; Choi YS; Son WJ; Lee D; Kang S
    J Cheminform; 2019 Nov; 11(1):70. PubMed ID: 33430985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressed graph representation for scalable molecular graph generation.
    Kwon Y; Lee D; Choi YS; Shin K; Kang S
    J Cheminform; 2020 Sep; 12(1):58. PubMed ID: 33431050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment-based deep molecular generation using hierarchical chemical graph representation and multi-resolution graph variational autoencoder.
    Gao Z; Wang X; Blumenfeld Gaines B; Shi X; Bi J; Song M
    Mol Inform; 2023 May; 42(5):e2200215. PubMed ID: 36764926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCGG: A deep structure-conditioned graph generative model.
    Faez F; Hashemi Dijujin N; Soleymani Baghshah M; Rabiee HR
    PLoS One; 2022; 17(11):e0277887. PubMed ID: 36409705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric deep learning methods and applications in 3D structure-based drug design.
    Bai Q; Xu T; Huang J; Pérez-Sánchez H
    Drug Discov Today; 2024 Jul; 29(7):104024. PubMed ID: 38759948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FastGAE: Scalable graph autoencoders with stochastic subgraph decoding.
    Salha G; Hennequin R; Remy JB; Moussallam M; Vazirgiannis M
    Neural Netw; 2021 Oct; 142():1-19. PubMed ID: 33962132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STAGAN: An approach for improve the stability of molecular graph generation based on generative adversarial networks.
    Zou J; Yu J; Hu P; Zhao L; Shi S
    Comput Biol Med; 2023 Dec; 167():107691. PubMed ID: 37976819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery.
    Pham TH; Xie L; Zhang P
    Proc SIAM Int Conf Data Min; 2022; 2022():720-728. PubMed ID: 35509686
    [No Abstract]   [Full Text] [Related]  

  • 10. Multi-sample dual-decoder graph autoencoder.
    He M; Zhao Q; Zhang H
    Methods; 2023 Mar; 211():31-41. PubMed ID: 36792041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional Molecular Design with Deep Generative Models.
    Kang S; Cho K
    J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Hierarchical Variational Autoencoders With Mutual Information Maximization for Autoregressive Sequence Modeling.
    Qian D; Cheung WK
    IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):1949-1962. PubMed ID: 35312617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization.
    Choong JJ; Liu X; Murata T
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain multigraph prediction using topology-aware adversarial graph neural network.
    Bessadok A; Mahjoub MA; Rekik I
    Med Image Anal; 2021 Aug; 72():102090. PubMed ID: 34004494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DyVGRNN: DYnamic mixture Variational Graph Recurrent Neural Networks.
    Niknam G; Molaei S; Zare H; Pan S; Jalili M; Zhu T; Clifton D
    Neural Netw; 2023 Aug; 165():596-610. PubMed ID: 37364470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks.
    Hu C; Li S; Yang C; Chen J; Xiong Y; Fan G; Liu H; Hong L
    J Cheminform; 2023 Oct; 15(1):91. PubMed ID: 37794460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug repositioning based on heterogeneous networks and variational graph autoencoders.
    Lei S; Lei X; Liu L
    Front Pharmacol; 2022; 13():1056605. PubMed ID: 36618933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite Graph Neural Networks for Molecular Property Prediction.
    Bongini P; Pancino N; Bendjeddou A; Scarselli F; Maggini M; Bianchini M
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.